
algpr tp n°4 – ants 1/7

AlgPr – Report

TP n°4
— Ants —

The goal of this tp is to simulate the emergence of collective intelligence with a simple model: an ant.
In this model an ant has to bring food (located somewhere in the world) to its anthill. A single ant can
only carry one unit of food, so the ants have to work together in order to supply the anthill with food.
To achieve this, the ants use pheromones to communicate with each other.

Though this may be a simple model, it’s the basis of many optimisation algorithms, for the Travelling
Salesman Problem as an example. We find a path between two points, and we try to minimise its length
by nudging it. If done right, the length will decrease until a local minimum is reached.

Our code can be found on Replit via the following URL :

https://replit.com/join/zqdgvdnyxa-hugos29.

I. Initializing and displaying the world.
The first step is to read the world file. This file contains the world size, and the coordinates of the
food reserves, and of the anthill. We will code the function LireEnvironnement , corresponding to the
algorithm bellow (Algorithm 1).

Input. fileName: string
Output. world: t_monde

world.𝐿 ← read(fileName)
world.𝐻 ← read(fileName)

world.F𝑥 ← read(fileName)
world.F𝑦 ← read(fileName)

For 𝑖 = 0 to world.𝐿 − 1 do
For 𝑗 = 0 to world.𝐻 − 1 do

world.mat[𝑗][𝑖] ← read(fileName)
End for

End for

Return world

Algorithm 1. The algorithm for the LireEnvironnement
function, responsible for reading the world

file

Now that we can read the .dat file containing the world data, we can code the main function—in
the main.cpp file—, correspond to the algorithm described bellow (Algorithm 2).

Hugo Salou & Changlin Li

https://replit.com/join/zqdgvdnyxa-hugos29

algpr tp n°4 – ants 2/7

Variables
𝑖, return, 𝑛ants: three integers,
world: t_monde ,
ants: a list of t_fourmi .

world ← LireEnvironnement("monde1.dat")

For 𝑖 = 0 to 𝑛ants do
ants[𝑖].𝑥 ← world.F𝑥
ants[𝑖].𝑦 ← world.F𝑦
ants[𝑖].mode ← 1
ants[𝑖].direction ← nalea(8)

End for

return ← InitAffichage(world.𝐿,world.𝐻)

While return ≠ 1 do
For 𝑖 = 0 to 𝑛ants do

MoveAnt(world, ants[𝑖])
UpdateAnt(ants[𝑖].𝑥, ants[𝑖].𝑦, ants[𝑖].mode)

If world.mat[ant.𝑦][ant.𝑥] > 0 and ant.mode = 1
and ant.𝑥 ≠ world.F𝑥 and ant.𝑦 ≠ world.F𝑦 then
world.mat[ant.𝑦][ant.𝑥] ← world.mat[ant.𝑦][ant.𝑥] − 1
ant.mode ← 0

Else if ant.𝑥 = world.F𝑥 and ant.𝑦 = world.F𝑦 and ant.mode = 0 then
world.mat[ant.𝑦][ant.𝑥] ← world.mat[ant.𝑦][ant.𝑥] + 1
ant.mode ← 1

End if
End for

UpdateEnvironment(world)
return ← Display()

End While

Algorithm 2. The algorithm for the main function

To represent an ant, we use the following t_fourmi type, as shown in Listing 1.

typedef struct {
 int x, y; // position of the ant in the world
 int mode; // 0 -> come back to the anthill;
 // 1 -> search for food
 int direction; // between 0 and 7
} t_fourmi;

Listing 1. The C++ code for type t_fourmi , represent-
ing a single ant

One of the most important part of this simulation is the function that’ll move an ant, it will be called
DeplaceFourmi . This function will be changed multiple times later on. As a first step, we start by

making the ant take steps in random direction, without taking account the world border, nor the ob-
stacles (Algorithm 3).

Hugo Salou & Changlin Li

algpr tp n°4 – ants 3/7

Input. ant: t_fourmi [shared]
Output. nothing

Variables. 𝑘: integer

𝑘 ← nalea(8)

ant.𝑥 ← ant.𝑥 + td𝑥[𝑘]
ant.𝑦 ← ant.𝑦 + td𝑦[𝑘]

Algorithm 3. The algorithm for the DeplaceFourmi func-
tion, version 1

In the algorithm above, we use the globally defined constant arrays td𝑥 and td𝑦:

td𝑥 = (+1,+1, 0,−1,−1,−1, 0,+1) and td𝑦 = (0,+1,+1,+1, 0,−1,−1,−1)

As said in the description of Algorithm 3, the algorithm doesn’t take the world border, nor the obstacles
in account. Thus, the ant may “leave the world”, or “walk on an obstacle.” The UpdateAnts function
warns us that one of the simulated did just that.

II. Linear movements with obstacle avoiding.
As described before, an ant can be in a valid position if it’s not outside of the world, nor on an obstacle.
The test performed by PositionPossible is the following one:

ant.𝑥 ∈ ⟦0, world.𝐿 − 1⟧
and

ant.𝑦 ∈ ⟦0, world.𝐻 − 1⟧
and

world.mat[fourmi.𝑦][fourmi.𝑥] ≠ OBSTACLE

An algorithm for this function returns the result of this test as a boolean.

Using the given algorithm, we implement the two function modulo8 and DeplaceFourmi (version
2). These two algorithm will make the ant more likely to go straight, instead of rotating at every step.

By changing the weight values for each rotation, we can make the ants more likely to turn left. For
example, we can set the weight for rotation +1 to 12, whilst setting the weight for rotation 0 to 2.
After implementing this change, we can see that the ants tend to move in circles, always turning left.
Doing the same procedure to make the ants turn right will yield expected results.

III. Looking for food, and going back to the anthill.
Now that the ants have a more realistic scattering procedure, we can work on helping the ants go
back to the anthill. Since the anthill has a fixed position (F𝑥, F𝑦), the ants can more straight to the
anthill when they want to bring food. Thus, we implement this in the DirFourmiliere function, cor-
responding to the algorithm bellow (Algorithm 4).

Hugo Salou & Changlin Li

algpr tp n°4 – ants 4/7

Input. 𝑥, 𝑦, F𝑥, F𝑦: four integers,
Output. dir: integer

Variables.
d𝑥, d𝑦: two integers,
norm: a floating-point number,
𝑖: an integer.

d𝑥 ← F𝑥 − 𝑥
d𝑦 ← F𝑦 − 𝑦

norm ← √(d𝑥)2 + (d𝑦)2

d𝑥 ← ⌊
d𝑥
norm

⌉

d𝑦 ← ⌊
d𝑦
norm

⌉

For 𝑖 = 0 to 7 do
If d𝑥 = td𝑥[𝑖] and d𝑦 = td𝑦[𝑖] then

Return 𝑖
End if

End for

Return −1

Algorithm 4. The algorithm for the DirFourmiliere
function[1]

[1]In this function, the C++ round will be denoted as ⌊⋅⌉. This way, round(x) will be written as ⌊x⌉.

With this function, we now know which direction the ant has to take to get to the anthill. Thus, we
can now update the algorithm behind the DeplaceFourmi function, as shown bellow in Algorithm 5.

With this change, one of the two “actions” an ant can do has been optimized: the ant can now reach
its nest faster. However, the ant still has to randomly stumble on the food in order to bring it home.
We need to make the ants remember where the food here, and how to get there. That’s what will be
implemented next: “pheromones.”

IV. Pheromones
In this part, we will model the pheromones used by ants in the real world to communicate with each
other. Every 70 simulation steps, the pheromones will evaporate (1% of the pheromone is removed,
everywhere on the grid). The ants coming back to the nest with food will disperse pheromones on
its current cell, and the neighboring ones. The ants looking for food will “adjust” the weights used to
move in order to follow the pheromone trail. Each ant has can diverge from the path, and this allows
the length of the path to converge to a local minimum.

We implement this change by updating the DeplaceFourmi function, corresponding to Algorithm 6.

Finding food becomes easier for the ants. For example, in the “ monde3.dat ” world, even though the
entrance of the “cave” is quite narrow, most of the ants tend to go in this direction to find food, after
some time.

Hugo Salou & Changlin Li

algpr tp n°4 – ants 5/7

Input. ant: t_fourmi [shared], world: t_monde
Output. nothing

Variables.
𝑥, 𝑦, d𝑥, d𝑦: four integers,
weights: an array of 8 integers,
𝑖, 𝑘: two integers.

weights ← (0, 0, 0, 0, 0, 0, 0, 0)

𝑥 ← ant.𝑥
𝑦 ← ant.𝑦

If ant.mode = 1 then (the ant is looking for food)
For 𝑖 = 0 to 7 do

d𝑥 ← td𝑥[𝑖]
d𝑦 ← td𝑦[𝑖]

If not PositionPossible(𝑥 +d𝑥, 𝑦 +d𝑦, world)
or (𝑥 +d𝑥 = world.F𝑥 and 𝑦 +d𝑦 = world.F𝑦) then
weights[𝑖] ← 0

Else if world.mat[𝑦 +d𝑦][𝑥 +d𝑥] > 0 then
weights[𝑖] ← 100 000

Else
weights[𝑖] ← 𝑤⟶straight[modulo8(𝑖 − ant.direction)][2]

End if
End for

Else (the ant is going back to the anthill)
For 𝑖 = 0 to 7 do

d𝑥 ← td𝑥[𝑖]
d𝑦 ← td𝑦[𝑖]

If not PositionPossible(𝑥 +d𝑥, 𝑦 +d𝑦, world) then
weights[𝑖] ← 0

Else
weights[𝑖] ← 𝑤⟵straight[modulo8(𝑖 − ant.direction)][2]

End if
End for

End if

𝑘 ← nalea_pondere(weights)

ant.𝑥 ← ant.𝑥 + td𝑥[𝑘]
ant.𝑦 ← ant.𝑦 + td𝑦[𝑘]

ant.direction ← 𝑘

Algorithm 5. The algorithm for the DeplaceFourmi func-
tion, version 3

[2]The 𝑤straight arrays correspond to the p_toutdroit C++ vector. The 𝑤⟶straight corresponds to the vector when the ant seeks for food.
The 𝑤⟵straight corresponds to the vector when the ant goes to the nest.

Hugo Salou & Changlin Li

algpr tp n°4 – ants 6/7

Input.
ant: t_fourmi [shared],
world: t_monde ,
pheromones: t_matrice [shared]

Output. nothing

Variables.
𝑥, 𝑦, d𝑥, d𝑦: four integers,
weights: an array of 8 integers,
𝑖, 𝑘: two integers.

weights ← (0, 0, 0, 0, 0, 0, 0, 0)

𝑥 ← ant.𝑥
𝑦 ← ant.𝑦

If ant.mode = 1 then (the ant is looking for food)
For 𝑖 = 0 to 7 do

d𝑥 ← td𝑥[𝑖]
d𝑦 ← td𝑦[𝑖]

If not PositionPossible(𝑥 +d𝑥, 𝑦 +d𝑦, world)
or (𝑥 +d𝑥 = world.F𝑥 and 𝑦 +d𝑦 = world.F𝑦) then
weights[𝑖] ← 0

Else if world.mat[𝑦 +d𝑦][𝑥 +d𝑥] > 0 then
weights[𝑖] ← 100 000

Else
opp ← DirFourmiliere(world.F𝑥, world.F𝑦, 𝑥 +d𝑥, 𝑦 +d𝑦)
opp ← opp − 4 − ant.direction

weights[𝑖] ← 𝑤⟶straight[modulo8(𝑖 − ant.direction)]
weights[𝑖] ← weights[𝑖] + pheromones[𝑦 +d𝑦][𝑥 +d𝑥] × |opp|

End if
End for

Else (the ant is going back to the anthill)
pheromones[𝑦][𝑥] ← min(pheromones[𝑦][𝑥] + 10, 100)

For 𝑖 = 0 to 7 do
d𝑥 ← td𝑥[𝑖]
d𝑦 ← td𝑦[𝑖]

If not PositionPossible(𝑥 +d𝑥, 𝑦 +d𝑦, world) then
weights[𝑖] ← 0

Else
weights[𝑖] ← 𝑤⟵straight[modulo8(𝑖 − ant.direction)]

End if

pheromones[𝑦 +d𝑦][𝑥 +d𝑥] ← min(pheromones[𝑦 +d𝑦][𝑥 +d𝑥] + 5, 100)
End for

End if

𝑘 ← nalea_pondere(weights)

ant.𝑥 ← ant.𝑥 + td𝑥[𝑘]
ant.𝑦 ← ant.𝑦 + td𝑦[𝑘]

ant.direction ← 𝑘

Algorithm 6. The algorithm for the DeplaceFourmi func-
tion, version 4

Hugo Salou & Changlin Li

algpr tp n°4 – ants 7/7

As stated before, the length of the ants’ path to the food will tend towards a local minimum. If anther
shorter path exists, they may not always find it. This gives an approximation of the path. In order to
find an exact shortest path, we can use other algorithms like Dijkstra’s or 𝐀⋆ .

Similar algorithms may be used when an approximation is acceptable, or when the exact solution is
too computationally expensive (for example, the Travelling Salesman Problem).

Hugo Salou & Changlin Li

	Initializing and displaying the world.
	Linear movements with obstacle avoiding.
	Looking for food, and going back to the anthill.
	Pheromones

