CHAPITRE 10

Nombre

 \mathbb{N}

TABLE DES MATIÈRES

Axiomatique de IN	2
II Récurrence	5
III Divisibilité	8
IV Arithmétique modulaire	13
${f V}$ Axiomatique de ${\Bbb N}$	16
VI Récurrences	19
VII Divisibilité	21
VIII Division Euclidienne	23
IX Arithmétique Modulaire	27
X PCGD et PPCM	31
XI Décomposition en Facteurs Premiers	38

Première partie

Axiomatique de \mathbb{N}

Axiome: (\mathbb{N}, \leqslant) est un ensemble non vide totalement ordonné vérifiant

- Toute partie non vide de $\mathbb N$ a un plus petit élément ;
- Toute partie non vide majorée de N a un plus grand élément;
- IN n'est pas majoré.

Définition: — 0 est le plus petit élément de \mathbb{N} : $0 = \min(\mathbb{N})$.

- $-1 = \min(\mathbb{N}^*) = \min(\mathbb{N} \setminus \{0\}).$
- Soit $n \in \mathbb{N}$. On pose $n+1 = \min (\{k \in \mathbb{N} \mid k > n\})$. On dit que n+1 est le successeur de n.
- Soit $n \in \mathbb{N}^*$. On pose $n-1 = \max (\{k \in \mathbb{N} \mid k < n\})$. On dit que n-1 est le prédécesseur de n.

Proposition:

$$\begin{cases} \forall n \in \mathbb{N}, \ (n+1) - 1 = n; \\ \forall n \in \mathbb{N}^*, \ (n-1) + 1 = n. \end{cases}$$

Preuve.

Soit $n \in \mathbb{N}$. On pose p = n+1 et q = p-1. On a donc n < p et q < p et donc $n \leqslant q$ car $q = \max \left(\left\{ k \in \mathbb{N} \mid k .$

Si q > n, alors $q \ge p$ car $p = \min (\{k \in \mathbb{N} \mid k > n\})$: une contradiction.

On a donc q = n.

Proposition: Pour tout $n \in \mathbb{N}$, $\mathbb{N} \cap]n, n+1[=\varnothing$.

Preuve:

Soit $n \in \mathbb{N}$. On sait que n+1>n. Soit $p \in \mathbb{N}$ tel que n . Comme <math>p > n, $p \geqslant n+1$: une contradiction.

Théorème (récurrence): Soit P un prédicat sur $\mathbb N$ et $n_0 \in \mathbb N$. Si

$$\begin{cases} P(n_0) \text{ est vrai }, \\ \forall n \geq n_0, \ P(n) \implies P(n+1), \end{cases}$$

alors

 $\forall n \geq n_0, \ P(n)$ est vrai.

Preuve:

Soit $A=\{n\in\mathbb{N}\mid n\geqslant n_0\text{ et }P(n)\text{ faux }\}$ Supposons $A\neq\varnothing$; A a donc un plus petit élément. On pose $N=\min(A)$.

Cas 1 N=0, alors, comme $N\in A$, on a $n_0\leqslant 0$ et P(0) fausse. On en déduit que $n_0=0$: une contradiction car $P(n_0)=P(0)$ est vraie.

Cas 2 $N \neq 0$. Alors $N-1 \in \mathbb{N}$ et $N-1 \not\in A$ (car N-1 < N). On en déduit que $N-1 < n_0$ ou P(N-1) vraie.

- Supposons $N-1 < n_0$. $N \in A$ donc $N \geqslant n_0$ et donc $N-1 < n_0 \leqslant N$ donc $N=n_0$. Or, $N \in A$ donc P(N) fausse alors que $P(n_0)$ est vraie.

 Supposons $N-1 > n_0$ et P(N-1) vraie. Comme $N-1 \geqslant n_0$, $P(N-1) \Longrightarrow P(N)$ et donc P(N) est vraie. Or, $N \in A$ et donc P(N) est fausse. On en déduit que $A=\varnothing$.

Deuxième partie

Récurrence

II Récurrence

Proposition (récurrence double): Soit P un prédicat sur \mathbb{N} et $n_0 \in \mathbb{N}$. Si

$$\begin{cases} P(n_0) \text{ vraie} \\ P(n_0+1) \text{ vraie} \\ \forall n \in \mathbb{N} \text{ avec } n \geqslant n_0, \ P(n) \text{ et } P(n+1) \implies P(n+2) \end{cases}$$

Alors

 $\forall n \in \mathbb{N} \text{ avec } n \geq n_0, \ P(n) \text{ vraie.}$

Preuve:

On pose, pour tout $n \ge n_0$,

$$Q(n)$$
: " $P(n)$ et $P(n+1)$ ".

- -Q(0) est vraie.
- Soit $n \ge n_0$. On suppose Q(n) vraie. On sait alors que P(n+2) est vraie. De plus, par hypothèse de récurrence, P(n+1) est vraie. Donc Q(n+1) est vraie.

Exemple:

On pose $u_0 = 0, u_1 = 1$ et

$$\forall n \in \mathbb{N}, \ u_{n+2} = u_{n+1} + u_n$$

Montrons que $\forall n \in \mathbb{N}, u_n \geqslant 0$.

- $-u_0=0 \ge 0;$
- $u_1 = 1 \geqslant 0;$
- Soit $n \in \mathbb{N}$. On suppose que $u_n \geqslant 0$ et $u_{n+1} \geqslant 0$. Alors $u_{n+2} = u_n + u_{n+1} \geqslant 0$.

Par récurrence double,

$$\forall n \in \mathbb{N}, \ u_n \geqslant 0.$$

Proposition: Soit P un prédicat, $p \in \mathbb{N}^*$ et $n_0 \in \mathbb{N}$. Si

$$\begin{cases} \forall k \in \llbracket 0, p-1 \rrbracket , \ P(n_0+k) \ \text{vraie}; \\ \forall n \geqslant n_0, \ \left(P(n) \ \text{et} \ P(n+1) \ \text{et} \ \cdots \ \text{et} \ P(n+p-1) \right) \implies P(n+p). \end{cases}$$

Alors,

$$\forall n \geqslant n_0, P(n)$$
 vraie.

Exemple:

On pose $u_0 = 0$, $u_1 = 1$, $u_2 = 2$, $u_3 = 3$ et

$$\forall n \in \mathbb{N}, \ u_{n+4} = u_n + 2u_{n+1} + 3u_{n+2} + u_{n+3}.$$

Montrons que $\forall n \in \mathbb{N}, u_n \geqslant 0.$

- $u_0 \ge 0, u_1 \ge 0, u_2 \ge 0 \text{ et } u_3 \ge 0.$
- Soit $n \in \mathbb{N}$. On suppose $u_n \ge 0$, $u_{n+1} \ge 0$, $u_{n+2} \ge 0$ et $u_{n+3} \ge 0$. Comme u_{n+4} est la somme de réels positifs, $u_{n+4} \ge 0$.

Proposition (récurrence forte): Soit P un prédicat sur \mathbb{N} et $n_0 \in \mathbb{N}$. Si $P(n_0)$ est vrai et

$$\forall n \ge n_0, (P(n_0) \text{ et } \dots \text{ et } P(n-1) \text{ et } P(n)) \implies P(n+1).$$

II Récurrence

Alors,

 $\forall n \geq n_0, P(n)$ est vraie.

Preuve:

On pose, pour tout $n \in \mathbb{N}$,

$$Q(n)$$
: " $\forall k \in \llbracket n_0, n \rrbracket$, $P(k)$ vraie".

- $Q(n_0)$ est vraie car $P(n_0)$ est vraie.
- Soit $n \ge n_0$. On suppose Q(n) vraie. On sait donc que $\forall k \in [n_0, n]$, P(k) vraie. Alors, P(n+1) est vraie et donc

$$\forall k \in [n_0, n+1], P(k)$$
 est vraie.

Ainsi, Q(n+1) est vraie.

Exemple:

Montrer que tout entier supérieur ou égal à 2 peut s'écrire comme un produit de nombres premiers. On prouve ce résultat par récurrence forte.

- Le nombre 2 est un nombre premier : 2 = 2.
- Soit $n \ge 2$. On suppose que, tout entier $k \in [\![2,n]\!]$ est un produit de nombres premiers. On pose N=n+1.
 - Cas 1 N est premier et donc, on peut l'exprimer comme un produit de nombres premiers : N=N.
 - Cas 2 N n'est pas un nombre premier. Alors, il existe p,q tels que $N=p\times q$ avec 1< p< N et 1< q< N. Comme $p\in [\![2,n]\!], p$ est un produit de nombres premiers. De même pour q. Donc, le produit $N=p\times q$ est un produit de nombres premiers.

Exemple:

Avec $u_0=0,\,u_1=1,\,u_2=2,\,u_3=3$ et, pour tout $n\in\mathbb{N},\,u_{n+4}=u_n+2u_{n+1}+3u_{n+2}+u_{n+3},$ montrer que, pour tout $n\in\mathbb{N},\,u_n\geqslant 0$. On prouve ce résultat par récurrence forte.

- $-u_0=0 \geqslant 0.$
- Soit $n \in \mathbb{N}$. On suppose que $\forall k \in \llbracket 1, n \rrbracket \, , \, u_k \geqslant 0.$
 - Si n = 0, $u_{n+1} = u_1 = 1 \ge 0$.
 - Si n = 1, $u_{n+1} = u_2 \ge 0$.
 - Si n = 2, $u_{n+1} = u_3 \ge 0$.
 - $-\operatorname{Si} n \geqslant 3, u_{n+1} = \underbrace{u_{n-3}}_{\geqslant 0} + 2\underbrace{u_{n-2}}_{\geqslant 0} + 2\underbrace{u_{n-1}}_{\geqslant 0} + 3\underbrace{u_n}_{\geqslant 0} \geqslant 0.$

Troisième partie

Divisibilité

Ш Divisibilité

Définition: Soient $a, b \in \mathbb{Z}$. On dit que a divise b s'il existe $k \in \mathbb{Z}$ tel que $b = k \times a$. Dans ce cas, on écrit $a \mid b$. On dit aussi que a est un <u>diviseur</u> de b; et que b est un $\underline{\text{multiple}}$ de a.

Exemple: $\forall x \in \mathbb{Z}, 1 \mid x$.

- $\begin{array}{ll} & 0 \mid 0 \text{ mais } \forall x \in \mathbb{Z}^*, 0 \nmid x. \\ & \forall x \in \mathbb{Z}, x \mid 0. \end{array}$

Proposition: "|" est une relation d'ordre sur \mathbb{Z} .

Proposition: Soient $(a, b) \in \mathbb{Z} \times \mathbb{Z}^*$.

 $a \mid b \implies |a| \leqslant |b|$.

Proposition: Soient $a, b, c \in \mathbb{Z}$.

$$\begin{vmatrix} a \mid b \\ a \mid c \end{vmatrix} \implies (\forall (k, \ell) \in \mathbb{Z}^2, \ a \mid (kb + \ell c)).$$

Preuve:

On pose $u, v \in \mathbb{Z}$ tels que

$$\begin{cases} b = au \\ c = av \end{cases}$$

Soient $k, \ell \in \mathbb{Z}$.

$$bk + \ell c = aku + a\ell v = a\underbrace{ku + \ell v}_{\in \mathbb{Z}}.$$

et donc $a \mid (ku + \ell v)$.

Exemple:

Soient $n \in \mathbb{N}$.

$$\left. \begin{array}{c} a \mid n \\ a \mid n+1 \end{array} \right\} \implies a \mid \left((n+1)-n \right) \implies a \mid 1 \implies a=\pm 1.$$

Définition: Soient $a,b\in\mathbb{Z}$. On dit que a et b sont associés si

$$a = b$$
 ou $a = -b$.

Proposition: Soient $a, b \in \mathbb{Z}$.

$$a \mid b \iff -a \mid b \iff a \mid -b.$$

Proposition (division euclidienne dans \mathbb{N}): Soient $(a, b) \in \mathbb{N} \times \mathbb{N}^*$.

$$\exists ! (q,r) \in \mathbb{N}^2, \begin{cases} a = bq + r, \\ 0 \leqslant r < q. \end{cases} \qquad \boxed{\frac{a}{r}}$$

Preuve: Existence On considère $A=\{q\in\mathbb{N}\mid qb\leqslant a\}.$ $A\neq\varnothing$ car $0\in A:0\times b=0\leqslant a.$ A est majoré :

$$\forall q \in A, \ a \geqslant qb \geqslant q \ \text{car} \ b \geqslant 1.$$

Soit $q=\max(A)$. On pose r=a-bq. Comme a,b et q sont des entiers positifs, $r\in\mathbb{Z}$. On sait que $q\in A$, donc $qb\leqslant a$ et donc $r\geqslant 0$. $q+1>\max A$ donc $q+1\not\in A$ i.e. (q+1)b>a et donc r< b.

Unicité Soient $(q',r') \in \mathbb{N}^2$ tels que $\begin{cases} a=q'b+r',\\ 0 \leqslant r' < b. \end{cases}$ Or, a=bq+r et donc, en soustrayant les deux égalités, on a

$$0 = b(q' - q) + r' - r.$$

De plus, $0 \le r < b$ et $-b < -r' \le 0$, et donc

$$r - r' = b \underbrace{(q' - q)}_{\in \mathbb{Z}}.$$

On en déduit que -b < r-r' < b. Le seul multiple de b dans $]\!]-b,b[\![$ est 0. Ainsi, r'=r et donc b(q'-q)=0. Or, b>0, donc q'=q.

Proposition (division euclidienne dans \mathbb{Z}): Soient $a \in \mathbb{Z}$ et $b \in \mathbb{Z}^*$.

$$\exists ! (q,r) \in \mathbb{Z}^2, \begin{cases} a = bq + r, \\ 0 \leqslant r \leqslant |b|. \end{cases}$$

Preuve: Existence Cas 1 $a \in \mathbb{N}$ et $b \in \mathbb{N}^*$. D'après la proposition précédente,

$$\exists ! (q, r) \in \mathbb{N}^2, \begin{cases} a = bq + r \\ 0 \leqslant r < b. \end{cases}$$

 $\begin{array}{l} \text{Comme } b>0, \text{ on a bien } 0\leqslant r<|b|=b. \text{ et } q\in\mathbb{N}\subset\mathbb{Z}.\\ \underline{\text{Cas } 2} \ \ a\in\mathbb{Z}^- \text{ et } b\in\mathbb{N}^*. \text{ Comme } -a\in\mathbb{N}, \end{array}$

$$\exists (q', r') \in \mathbb{N}^2, \begin{cases} -a = bq' + r', \\ 0 \leqslant r' < b \end{cases}$$

donc

$$a = b(-q') - r'$$

= $b(q' - 1) + b - r'$.

En posant,

$$q = \begin{cases} -q' - 1 & \text{si } r' \neq 0, \\ -q' & \text{si } r' = 0; \end{cases}$$

$$r = \begin{cases} b - r' & \text{si } r' \neq 0, \\ -r' & \text{si } r' = 0; \end{cases}$$

on a bien

$$\begin{cases} a = bq + r, \\ q \in \mathbb{Z}, \\ 0 \leqslant r < b. \end{cases}$$

Cas 3 $a \in \mathbb{N}$ et $b \in \mathbb{Z}_{-}^{*}$. On sait que

$$\exists (q',r') \in \mathbb{N}^2, \ \begin{cases} a = (-b)q' + r', \\ 0 \leqslant r' < -b. \end{cases}$$

En posant q=-q' et r=r', on a bien a=bq+r et $0\leqslant r<|b|$. Cas 4 $a\in\mathbb{Z}^-$ et $b\in\mathbb{Z}_+^*$. On sait que

$$\exists (q', r') \in \mathbb{N}^2, \begin{cases} -a = -bq' + r' \\ 0 \leqslant r' < -b. \end{cases}$$

Donc,

$$a = bq' - r'$$

= $b(q' + 1) - r' - b$.

En posant

$$q = \begin{cases} q' & \text{si } r' = 0, \\ q' + 1 & \text{si } r' \neq 0; \end{cases}$$

$$r = \begin{cases} r' & \text{si } r' = 0, \\ -r' - b & \text{si } r' \neq 0; \end{cases}$$

on a bien

$$\begin{cases} a = bq + r \\ q \in \mathbb{Z} \\ 0 \leqslant r < |b|. \end{cases}$$

Unicité Soient $(q', r') \in \mathbb{Z}^2$ tels que

$$\begin{cases} a = bq' + r' \\ \leqslant r' < |b|. \end{cases}$$

Or, on sait qye a = bq + r et $0 \le r < |b|$. D'où

$$\begin{cases} b(q' - q) = r' - r \\ -|b| < r - r' < |b| \end{cases}$$

donc r - r' = 0 et donc q = q'.

Définition: Soient $a \in \mathbb{Z}$ et $b \in \mathbb{Z}^*$. D'après le théorème précédent, il existe un unique

Ш Divisibilité

couple $(q,r)\in \mathbb{Z}\times \mathbb{N}$ tel que

$$\begin{cases} a = bq + r \\ 0 \leqslant r < |b|. \end{cases}$$

On dit que r est le <u>quotient</u>, et r le <u>reste</u> dans la <u>division (euclidienne)</u> de a par b.

Soit $n \in \mathbb{N}$ impair. On divise n par 2: soient $(q,r) \in \mathbb{Z} \times \mathbb{N}$ tels que $\begin{cases} n = 2q + r \\ 0 \leqslant r < 2. \end{cases}$

Si $r=0,\,n$ est pair : une contradiction. Ainsi, $r\neq 0$ et donc r=1. On a donc n=2q+1.

Proposition: Soient $a \in \mathbb{Z}$ et $b \in \mathbb{Z}^*$. On note r le reste de la division euclidienne de a par b.

$$r = 0 \iff a \mid b.$$

Preuve:

On pose a = bq + r avec $q \in \mathbb{Z}$.

" \Longrightarrow " Si r=0, alors a=bq avec $q\in\mathbb{Z}$ et donc $b\mid a$.
" \Leftarrow " Si $b\mid a$, il existe $k\in\mathbb{Z}$ tel que a=bk. Donc, a=bk+0 et $0\leqslant 0<|b|$. Par unicité de la division euclidienne, r = 0.

Quatrième partie

Arithmétique modulaire

Définition: Soient $a,b\in\mathbb{Z}$ et $c\in\mathbb{N}^*.$ On dit que a est <u>congrus</u> à b modulo c si a et bont le même reste dans la division euclidienne par c. Dans ce cas, on écrit $a \equiv b \ [c]$.

Proposition: La congruence modulo c est une relation d'équivalence.

Remarque (Notation):

On note $\mathbb{Z}/c\mathbb{Z}$ l'ensemble des classes d'équivalences modulo c.

Par exemple, $\mathbb{Z}/5\mathbb{Z} = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}\}.$

Proposition: Soient $a, b \in \mathbb{Z}$ et $c \in \mathbb{N}^*$.

$$a \equiv b \ [c] \iff c \mid (b-a).$$

Preuve: " \Longrightarrow " Soient $q, q' \in \mathbb{Z}$ et $r \in \mathbb{N}$ tels que

$$\begin{cases} a = cq + r \\ b = cq' + r \end{cases}$$

avec 0 < r < c. En soustrayant les égalités, on obtient

$$b - a = c\underbrace{(q' - q')}_{\in \mathbb{Z}}.$$

Ainsi,
$$c \mid (b-a)$$
.

" \Leftarrow " On pose $\begin{cases} a = cq + r \\ b = cq' + r' \end{cases}$ avec $(q,q') \in \mathbb{Z}$ et $\begin{cases} 0 \leqslant r < c \\ 0 \leqslant r' < c. \end{cases}$ En soustrayant les égalités et inégalités, on obtient

$$\begin{cases} b - a = c(q' - q) + r' - r \\ -c < r' - r < c. \end{cases}$$

La suite du cours provient d'Aubin. Je ne suis pas responsable pour les éventuelles bêtises qu'il a pu taper.

Cinquième partie

Axiomatique de \mathbb{N}

 $\textbf{Axiome} \; (\text{Axiomatique de Von Neumann}) \textbf{:} \quad (\mathbb{N}, \leq) \; \text{est un ensemble totalement ordonn\'e}$ vérifiant

Toute partie non vide de $\mathbb N$ a un plus petit élément

Toute partie non vide majorée de $\mathbb N$ a un plus grand élément

IN n'est pas majoré

```
Définition (0): 0 = \min(\mathbb{N})
```

```
Définition (1): 1 = \min(\mathbb{N}\{0\})
```

```
Définition (n+1): Soit n \in \mathbb{N}
On pose n+1 = \min(\{k \in \mathbb{N} | k > n\})
On dit que n+1 est le successeur de n
```

```
 \begin{aligned}  & \textbf{Proposition (+1-1):} & \forall n \in \mathbb{N}, (n+1)-1 = n \\  & \forall n \in \mathbb{N}, (n-1)+1 = n \end{aligned}
```

```
Preuve:
```

Soient $n \in \mathbb{N}, p = n + 1, q = p - 1$

n < p et q < p

Donc $n \le q$ car $q = \max(\{k \in \mathbb{N} | k < p\})$

Si q > n, alors $q \ge p$ car $p = \min(\{k \in \mathbb{N} | k > n\})$

Donc q = n

Proposition (Ensemble Ouvert Vide): $\forall n \in \mathbb{N}, [n, n+1] = \emptyset$

Preuve:

Soit $n \in \mathbb{N}$, on sait que n+1 > n

Soit p > n, on suppose n $Comme <math>p > n, p \geqslant n+1$ Contradiction

Proposition (Théorème de Récurrence): Soit P un prédicat sur $\mathbb N$ et $n\in\mathbb N$

```
Si \begin{cases} P(n_0) \text{ est vrai} \\ \forall n \geq n_0 n P(n) \Longrightarrow P(n+1) \\ \text{Alors } \forall n \geq n_0, P(n) \text{ est vrai} \end{cases}
```

```
Soit A = \{n \in \mathbb{N} | n \geqslant n_0\} et P(n) faux
Supposons A \neq \emptyset
A a donc un plus petit élement, soit N = \min(A)
{\rm Cas}\ 1:N=0
Alors, comme N \in A, on a n_0 \leq 0 et P(0) est faux
Alors n_0 = 0 Contradiction avec "P(n) est vrai"
\begin{array}{l} \text{Cas 2}: N \neq 0 \\ \text{Alors } N-1 \in \mathbb{N} \end{array}
N-1 \not\in A \text{ car } N-1 < N
Donc\stackrel{,}{N}-1 < n_0ou P(n)vrai
Supposons N - 1 < n_0
N \in A \text{ donc } N \geqslant n_0

N - 1 < n_0 < N
Donc N = n_0
Or, N \in A donc P(n) est faux alors que P(n) est vrai
Supposons \left\{\begin{array}{ll} P(n-1) \text{ vrai} \\ N-1\geqslant n_0 \end{array}\right. \text{ Comme } N-1\geqslant n_0, P(N-1)\Longrightarrow P(N)
Donc P(N) est vrai
Or, N \in A donc P(N) est faux
Donc A = \emptyset
```

18

Sixième partie

Récurrences

```
Proposition (Récurrence Double): Soient P un prédicat sur \mathbb{N} et n_0 \in N Si \begin{cases} P(n_0) \text{ est vrai} \\ P(n_0+1) \text{ est vrai} \\ \forall n > n_0, P(n) \text{ et } P(n+1) \Longrightarrow P(n+2) \\ \text{Alors } \forall n \geqslant n_0, P(n) \text{ est vrai} \end{cases}
```

```
Preuve:
```

On pose $\forall n \in \mathbb{N}, Q(n): ``P(n) \mbox{ et } P(n+1) \mbox{ vrais } ``Q(n_0) \mbox{ est vrai}$

Soit $n\geqslant n_0$, on suppose Q(n) vrai On sait alors que P(n+2) est vrai On sait par hypothèse de récurrence que P(n+1) est vrai Donc Q(n+1) est vrai

Proposition (Récurrence Multiple): Soient P un prédicat sur \mathbb{N} et $(p, n_0) \in \mathbb{N}^2$ Si $\left\{ \begin{array}{l} \forall k \in [\![0,p]\!], P(n_0-k) \text{ est vrai} \\ \forall n \geqslant n_0, (P(n) \text{ et } \dots P(n+p-1)) \Longrightarrow P(n+p) \end{array} \right.$ Alors $\forall n \geqslant n_0, P(n)$ est vrai

Proposition (Récurrence Forte): Soient P un prédicat sur \mathbb{N} et $n_0 \in \mathbb{N}$ Si $\left\{ \begin{array}{l} P(n_0) \text{ est vrai} \\ \forall n \geqslant n_0, (P(n_0) \text{ et ... } P(n-1)) \Longrightarrow P(n) \\ \text{Alors } \forall n \geqslant n_0, P(n) \text{ est vrai} \end{array} \right.$

Preuve:

On pose $\forall n\in N, Q(n): ``\forall k\in [\![n_0,n]\!], P(k)$ vrai'' $Q(n_0)$ est vrai car $P(n_0)$ est vrai

Soit $n \geqslant n_0$, on suppose Q(n) vrai On sait que $\forall k \in \llbracket n_0, n \rrbracket, P(k)$ est vrai Alors P(n+1) est vrai Donc $\forall k \in \llbracket n_0, n+1 \rrbracket, P(k)$ est vrai Donc Q(n+1) est vrai

Septième partie

Divisibilité

VII Divisibilité

```
Définition (Divisibilité): Soient (a,b) \in \mathbb{Z}^2
On dit que a divise b si il existe k \in \mathbb{Z} tel que b = ka
On écrit a|b et on dit que \begin{cases} a \text{ est un diviseur de } b \\ b \text{ est un multiple de } a \end{cases}
```

Proposition (Caractéristiques de la Divisibilité): $\;|\;$ est une relation d'ordre sur $\mathbb Z$ Ce n'est pas une relation totale

Proposition (Ordonnancement et Divisibilité): Soient $(a,b) \in \mathbb{Z} \times \mathbb{Z}^*$ Si $a|b,|a| \leq |b|$

Proposition (Divisibilité et Combinaison Linéaire): Soient $(a,b,c) \in (\mathbb{Z}^*)^3$ $\begin{cases} a|b\\a|c \end{cases} \implies \forall (k,l) \in \mathbb{Z}^2, a|(bk+cl)$

```
Preuve: \begin{cases} b = au \text{ avec } u \in \mathbb{Z} \\ c = av \text{ avec } v \in \mathbb{Z} \end{cases} Soient (k, l) \in \mathbb{Z}^2 bk + cl = auk + avl = a(uk + vl) Donc a|(bk + cl)
```

Définition (Nombres Associés): Soient $(a,b) \in \mathbb{Z}^2$

a et b sont associés si a=b ou a=-b

Proposition (Nombres Associés et Divisibilité): Soient $(a,b) \in \mathbb{Z}^2$ $a|b \iff -a|b \iff a|-b \iff -a|-b$

Huitième partie

Division Euclidienne

Proposition (Division Euclidienne dans \mathbb{N}): Soient $a \in \mathbb{N}$ et $b \in \mathbb{N}^*$ $\exists ! (q,r) \in \mathbb{N}^2, \begin{cases} a = bq + r \\ r \in [0,b[$

Existence : On considère
| $A=\{q\in\mathbb{N}|qb\leq a\}$ A est non vide car $0\in A$ Aest majoré : $\forall q \in A, q \leq a$ car $a \geqslant qb \geqslant q$

Soit $q = \max(A)$, on pose r = a - bqComme a,b et $q\in\mathbb{N},r\in\mathbb{Z}$ $q \in A \text{ donc } qb \leq a \text{ donc } r \geqslant 0$ $q+1 > \max(A)$ donc $q+1 \notin A$ donc (q+1)b > aDonc r < b

 Unicité : Soit $(q',r') \in \mathbb{N}^2$ tel que $\left\{ \begin{array}{l} a+bq'+r' \\ 0 \leq r' < b \end{array} \right.$ On sait aussi que a=bq+rDonc 0=b(q'-q)+r'-r-r'+r=b(q'-q)

De plus,
$$\begin{cases} & 0 \leq r < b \\ & -b < -r \leq 0 \end{cases}$$
 Donc $-b < r' - r < b$

Le seul multiple de b dans $]\!]-b,b[\![$ est 0Donc r'-r=0, donc r=r'et b(q'-q)=0Or, $b \neq 0$ donc q' - q = 0 donc q = q'

Proposition (Division Euclidienne dans \mathbb{Z}): Soient $a \in \mathbb{Z}$ et $b \in \mathbb{Z}^*$ $\exists ! (q,r) \in \mathbb{Z}^2, \begin{cases} a = bq + r \\ 0 \le r < |b| \end{cases}$

Preuve:

 ${\bf Existence}:$

Cas 1 : $a \in \mathbb{N}, b \in \mathbb{N}^*$

D'après ce qui précède, $\exists ! (q,r) \in \mathbb{N}^2, \left\{ \begin{array}{l} a = bq + r \\ 0 \leq r < b \end{array} \right.$ Comme $b \in \mathbb{N}^*$, on a bien $0 \le r < |b|$

 $q \in \mathbb{N} \subset \mathbb{Z}$

Cas 2 : $a \in \mathbb{Z}, b \in \mathbb{N}^*$ Comme $-a \in \mathbb{N}, \exists ! (q', r') \in \mathbb{N}^2, \left\{ \begin{array}{l} -a = bq' + r' \\ 0 \le r' < b \end{array} \right.$

Donc a = b(-q') - r'= b(-q'-1) - r' + b

On pose
$$q = \begin{cases} -q' - 1 & \text{si } r \neq 0 \\ -q' & \text{si } r = 0 \end{cases}$$
 et $r = \begin{cases} -r' + b & \text{si } r' \neq 0 \\ r' & \text{si } r' = 0 \end{cases}$
On a bien
$$\begin{cases} a = bq + r \\ q \in \mathbb{Z} \\ 0 \leq r < |b| \end{cases}$$

Cas
$$3: a \in \mathbb{N}, b \in \mathbb{Z}_{-}^*$$

Cas 3:
$$a \in \mathbb{N}, b \in \mathbb{Z}_{-}^*$$

$$\exists! (q', r') \in \mathbb{N}^2, \begin{cases} a = (-b)q' + r' \\ 0 \le r' < -b \end{cases}$$

On pose
$$\begin{cases} q = -q' \\ r = r' \end{cases}$$

On pose
$$\left\{ \begin{array}{l} q=-q'\\ r=r' \end{array} \right.$$
 Et on a bien
$$\left\{ \begin{array}{l} a=bq+r\\ 0\leq r<|b| \end{array} \right.$$

Cas
$$4: a \in \mathbb{Z}^-, b \in \mathbb{Z}^*_-$$

$$\exists ! (q', r') \in \mathbb{N}^2, \begin{cases} -a = -bq' + r' \\ 0 \le r' < -b \end{cases}$$

Donc
$$a = bq' - r'$$

= $b(q' + 1) - r' - b$

On pose
$$q = \left\{ \begin{array}{l} q'+1 \ \text{si} \ r \neq 0 \\ q' \ \text{si} \ r = 0 \end{array} \right.$$
 et $r = \left\{ \begin{array}{l} -r-b' \ \text{si} \ r' \neq 0 \\ r' \ \text{si} \ r' = 0 \end{array} \right.$ On a bien $\left\{ \begin{array}{l} a = bq + r \\ q \in \mathbb{Z} \\ 0 \leq r < |b| \end{array} \right.$

Unicité : Soit
$$(q',r') \in \mathbb{Z}^2$$
 tel que
$$\left\{ \begin{array}{l} a=bq'+r' \\ 0 \leq r' < |b| \end{array} \right. \text{ et } \left\{ \begin{array}{l} a=bq+r \\ 0 \leq r < |b| \end{array} \right.$$

D'où
$$\begin{cases} b(q'-q) = r'-r \\ -|b| < r-r' < |b| \end{cases}$$
 Donc $r-r'=0$

Donc
$$r' = r$$
 et $q' = q$

Définition (Quotient et Reste): Soient $a \in \mathbb{Z}$ et $b \in \mathbb{Z}^*$ D'après le théorème précédent, $\exists ! (q,r) \in \mathbb{Z} \times \mathbb{N}, \left\{ \begin{array}{l} a = bq + r \\ 0 \leq r < |b| \end{array} \right.$

On dit que q est le quotient et r le reste dans la division (euclidienne) de a par b

Proposition (Reste et Divisibilité): Soient $a \in \mathbb{Z}, b \in \mathbb{Z}^*$ On note r le reste de la division de a par b $r=0\iff b|a$

Preuve:

On pose $a = bq + r, q \in \mathbb{Z}$

"
$$\Longrightarrow$$
": Si $r=0$, alors $\left\{ \begin{array}{l} a=bq\\ q\in\mathbb{Z} \end{array} \right.$ donc $b|a$

" \Longleftrightarrow ": Si $b|a$, $\exists k\in\mathbb{Z}, a=bk$

Donc $\left\{ \begin{array}{l} a=bk+0\\ 0\leq 0<|b| \end{array} \right.$
Par unicité du reste, $r=0$

Neuvième partie

Arithmétique Modulaire

Définition (Congruences): Soient $(a,b) \in \mathbb{Z}^2, c \in \mathbb{N}^*$ On dit que a et b sont congrus modulo c si a et b ont le même reste dans ma division par cOn note a = b[c]

Proposition (Congruence et Relation D'Equivalence): La relation de congruence modulo c est une relation d'équivalence

Remarque (Classes d'Equivalence Modulo c): On note $\mathbb{Z}/c\mathbb{Z}$ l'ensemble des classes d'équivalence modulo c $\mathbb{Z}/5\mathbb{Z}=\{\bar{0},\bar{1},\bar{2},\bar{3},\bar{4}\}$

Proposition (Modulo et Divisibilité): Soient $(a,b) \in \mathbb{Z}^2$ et $c \in \mathbb{N}^*$ $a \equiv b[c] \iff c|b-a$

 $\begin{array}{l} \textit{Preuve:} \\ \text{``=>"} : \text{On pose } \left\{ \begin{array}{l} a = cq + r, q \in \mathbb{Z}, 0 \leq r < c \\ b = cq' + r, q' \in \mathbb{Z} \end{array} \right. \\ \text{Donc } b - a = c(q' - q) \\ \text{Donc } c|b - a \end{array}$

Si $r'-r\geqslant 0, r'-r$ est le reste de la division de a-b par c Donc r'=r donc $a\equiv b[c]$

Si r'-r<0, r-r' est le reste de la division de a-b par c Donc r'=r donc $a\equiv b[c]$

Proposition (Addition et Multiplication de Congruences): Soient $(a,b,x,y) \in \mathbb{Z}^4$ et $c \in \mathbb{N}^*$

On suppose $\begin{cases} a \equiv b[c] \\ x \equiv y[c] \end{cases}$

Alors $\begin{cases} a+x \equiv b+y[c] \\ ax \equiv by[c] \end{cases}$

Preuve: c|b-a et c|y-x

```
Donc c|(b-a+y-x)

Donc c|(b+y-(a+x))

Donc a+x\equiv b+y[c]

On pose \begin{cases} a=ck+b, k\in\mathbb{Z}\\ x=cl+y, l\in\mathbb{Z} \end{cases}
ax=(ck+b)(cl+y)
=by+cky+clk+c^2kl
=by+c(ky+bl+clk)
Donc ax\equiv by[c]
```

Proposition (Critères de Divisibilité en Base 10): Soit $N \in \mathbb{N}$, on notera ses chiffres $a_0...a_n$ $N = \sum_{k=0}^n 10^k a_k$ Divisibilité par 2: $N \text{ pair} \iff N \equiv 0[2]$ $\iff a_0 \equiv 0[2] \text{ car } \forall k \geqslant 1, 10^k \equiv 0[2]$ 100 = 1 $\equiv 1[2]$ Divisibilité par 3: $\forall k \in \mathbb{N}, 10^k \equiv 1^k \equiv 1[3] \text{ car } 10 \equiv 1[3]$ 3 $|N \iff N \equiv 0[3]$ $\iff \sum_{k=0}^n 10^k a_k \equiv 0[3]$ Divisibilité par 9: $\forall k \in N, 10^k \equiv 1[9]$ 9 $|N \iff N \equiv 0[9]$ $\iff \sum_{k=0}^n 10^k a_k \equiv 0[9]$ Divisibilité par 5: $\begin{cases} 10^0 \equiv 1[5] \\ \forall k \in \mathbb{N}^*, 10^k \equiv 0[5] \\ \forall k \in \mathbb{N}^*, 10^k \equiv 0[5] \end{cases}$ Divisibilité par 5: $\begin{cases} 10^0 \equiv 1[5] \\ \forall k \in \mathbb{N}^*, 10^k \equiv 0[5] \\ \Rightarrow a_0 \equiv 0[5] \\ \iff a_0 \in \{0, 5\} \end{cases}$ Divisibilité par 11: $10^0 \equiv -1[11] \\ \text{Donc } \forall k \in \mathbb{N}, 10^k \equiv (-1)^k[11]$ $N \equiv 0[11] \iff \sum_{k=0}^n (-1)^k a_k \equiv 0[11]$ $\iff a_0 - a_1 + a_2... + (-1)^n a_n \equiv 0[11]$

Remarque (Réécriture en Classes d'Equivalence): On peut réecrire le calcul précédent dans $\mathbb{Z}/11\mathbb{Z}$

$$\overline{N} = \sum_{k=0}^{n} 10^k a_k = \sum_{k=0}^{n} \overline{10^k} \ \overline{a_k} = \sum_{k=0}^{n} \overline{(-1)^k} \ \overline{a_k}$$

Remarque (Opération dans $\mathbb{Z}/n\mathbb{Z}$):

Dans
$$\mathbb{Z}/n\mathbb{Z}$$
, on dispose $\left\{\begin{array}{ll} \text{d'une addition}: & \overline{a} + \overline{b} = \overline{a+b} \\ \text{d'une multiplication}: \overline{a} * \overline{b} = \overline{a*b} \end{array}\right.$

L'addition est commutative, associative, n'élément neutre $\overline{0}$ et l'opposé de \overline{a} est $\overline{-a}$ La multiplication est commutative, associative, d'élément neutre $\overline{1}$ et distributive par rapport à +

Dixième partie

PCGD et PPCM

```
Définition (PGCD): Soient (a,b) \in \mathbb{Z}^2
Le PGCD de a et b est le plus grand diviseur commun à a et b
Il existe car \mathscr{D} = \{d \in \mathbb{N} | d | a et d | b\} est non vide car a \in \mathscr{D}
\mathscr{D} est majoré par |a|
On le note PGCD(a,b) ou a \wedge b
```

Proposition (Théorème d'Euclide): Soient $a \in \mathbb{Z}, b \in \mathbb{N}^*$ Soit r le reste de la division de a par b $a \wedge b = b \wedge r$

Preuve:
$$\begin{cases} d = a \wedge b \\ \varsigma = b \wedge r \\ a = bq + r \end{cases}$$

$$\begin{cases} d|a \\ d|b \end{cases} \implies \begin{cases} d|a - bq \\ d|b \end{cases} \implies \begin{cases} d|r \\ d|b \end{cases} \implies d \leq \varsigma$$

$$\begin{cases} \varsigma|b \\ \varsigma|r \end{cases} \implies \begin{cases} \varsigma|bq + r \\ \varsigma|b \end{cases} \implies \begin{cases} \varsigma|a \\ \varsigma|b \end{cases} \implies \varsigma \leq d$$
Donc $d = \varsigma$

Proposition (PGCD et Diviseurs): Soient $(a,b) \in \mathbb{Z}^2$ et $d = a \wedge b$ $\mathscr{D} = \{k \in \mathbb{Z} | k|a, k|b\}$ $\forall k \in \mathbb{Z}, k \in \mathscr{D} \iff k|d$

Preuve: " \Leftarrow ": Soit $k \in \mathbb{Z}$, on suppose k|d d|a donc k|a d|b donc k|b

Donc $k \in \mathscr{D}$

"⇒": Soit $k \in \mathcal{D}$ On pose r_0 le reste de la division de a par b, r_1 le reste de la division de b par r_0 et $\forall n \in \mathbb{N}, r_{n+1}$ le reste de la division de r_{n-1} par r_n si $r_n \neq 0$

La suite (r_n) est décroissante, minorée par 0 et à valeurs entières Soit $N\in\mathbb{N}$ tel que $r_N=0$ (si N=0, on pose $r_{-1}=b$)

D'après la poposition précédente, $d=a \wedge b=b \wedge r_0=r_0 \wedge r_1...r_{N-1} \wedge r_N\\ =r_{N-1} \wedge 0=r_N$

```
On pose aussi \forall n \in [\![1,N-1]\!], r_{n-1}=r_nq_n+r_{n+1}
On en déduit que \exists (\alpha_n,\beta_n) \in \mathbb{Z}^2, r_{N-1}=a\alpha_N+b\beta_N
\left\{\begin{array}{cc} k|a\\ k|b \end{array} \right. \Longrightarrow k|a\alpha_N + b\beta_N \Longrightarrow k|r_{N-1} \Longrightarrow k|d
```

Définition (PPCM): Soit $(a,b) \in \mathbb{Z}^2$, on pose $M = \{k \in \mathbb{N} | a|k, b|k\}$ $M \neq \emptyset$ car $ab \in M$ $M \neq \varnothing$ donc admet un plus petit élément noté $\mathsf{PPCM}(a,b)$ ou $a \vee b$

Proposition (Produit PGCD PPCM): $\forall (a,b) \in \mathbb{Z}^2, (a \land b)(a \lor b) = ab$

Preuve:

Voir paragraphe Facteurs Premiers

Proposition (Propriétés de \wedge et \vee): \wedge est commutative, associative sur \mathbb{Z}^* \vee est commutative, associative sur \mathbb{Z}^*

Soient
$$(a, b, c) \in (\mathbb{Z}^*)^3$$
, $d = (a \wedge b) \wedge c$, $\varsigma = a \wedge (b \wedge c)$

$$\begin{cases} d|c \\ d|a \wedge b \end{cases} \implies \begin{cases} d|c \\ d|a \\ d|b \end{cases}$$

$$\begin{cases} \varsigma|a \\ \varsigma|b \wedge c \end{cases} \implies \begin{cases} \varsigma|a \\ \varsigma|c \\ \varsigma|c \end{cases}$$

On pose $\varepsilon = \text{PGCD}(a, b, c)$ On a $\begin{cases} d \leq \varepsilon \\ \varsigma \leq \varepsilon \end{cases}$

On a
$$\begin{cases} d \leq \varepsilon \\ \varsigma \leq \varepsilon \end{cases}$$

$$\left\{ \begin{array}{ll} \varepsilon|a & \\ \varepsilon|b & \Longrightarrow \left\{ \begin{array}{ll} \varepsilon|a & \\ \varepsilon|c & \end{array} \right. \Longrightarrow \varepsilon|a \wedge (b \wedge c) \Longrightarrow \varepsilon \leq d \right.$$

De même, on $\varepsilon \leq \varsigma$ Donc $d = \varepsilon = \varsigma$

```
Proposition (Théorème de Bézout): Soient (a,b)\in\mathbb{Z}\times\mathbb{Z}^*, d=a\wedge b \exists (u,v)\in\mathbb{Z}^2, d=au+bv
```

```
Preuve:
On pose A = \{au + bv | (u, v) \in \mathbb{Z}^2\}
On veut montrer que d \in A
a = a*1 + b*0 \text{ donc } a \in A
b = a * 0 + b * 1 donc b \in A
0=a*0+b*0 \text{ donc } 0\in A
Soit (x, y) \in A^2
x = au_1 + bv_1, (u_1, v_1) \in \mathbb{Z}^2
y = au_2 + bv_2, (u_2, v_2) \in \mathbb{Z}^2
x + y = a(u_1 + u_2) + b(v_1 + v_2) \in A
Soit x \in A, k \in \mathbb{Z}
x = au + bv, (u, v) \in \mathbb{Z}^2
kx = aku + bkv \in A
Soit n = \min(A \cap \mathbb{N}^*) (|b| \in A \cap \mathbb{N}^*)
Soit x \in A
Par division euclidienne de x par n:
 \left\{ \begin{array}{l} x = nq + r \\ q \in A, 0 \leq r < n \end{array} \right.
 \left\{\begin{array}{ll} x \in A \\ n \in A \end{array}\right. \Longrightarrow \left\{\begin{array}{ll} x \in A \\ -qn \in A \end{array}\right. \Longrightarrow x - qn \in A \Longrightarrow r \in A
 \left\{ \begin{array}{ll} r < n \\ r \in A \end{array} \right. \Longrightarrow r \leq 0
Donc r=0
Donc n|x
\begin{array}{l} \text{D'où } A = n\mathbb{Z} \\ \text{Or, } \left\{ \begin{array}{l} a \in A \\ b \in A \end{array} \right. \Longrightarrow \left\{ \begin{array}{l} n|a \\ n|b \end{array} \right. \end{array}
Cas particulier : a \wedge b = d = 1, alors 1 est le seul diviseur positif de a et b
Donc n = 1 donc A = \mathbb{Z} donc 1 \in \mathbb{Z}
Cas général : On pose a'=\frac{a}{d}\in\mathbb{Z},\ b'=\frac{b}{d}\in\mathbb{Z},\ a'\wedge b'=1
D'après le cas particulier, \exists (u,v)\in\mathbb{Z}^2, a'u+b'v=1
D'où au + bv = d
```

Proposition (Réciproque du Théorème de Bézout): Soient $(a,b) \in \mathbb{Z} \times \mathbb{Z}^*$ On suppose qu'il existe $(u,v) \in \mathbb{Z}^2$ tel que au+bv=1

```
Alors a \wedge b = 1
      Preuve:
      On pose d=a\wedge b
      \left\{ \begin{array}{ll} \dot{d}|a\\ d|b \end{array} \right. \Longrightarrow d|au+bv \Longrightarrow d|1 \Longrightarrow d=1
                                                                                                                                                                                  Proposition (Théorème de Gauß): Soient (a,b,c) \in \mathbb{Z}^3 tels que \left\{ \begin{array}{l} a \wedge b = 1 \\ a|bc \end{array} \right.
       Alors a|c
      Preuve:
      D'après le théorème de Bézout,
     au + bv = 1 \text{ avec } (u, v) \in \mathbb{Z}^2
     D'où acu + bcv = c
      \left\{ \begin{array}{ll} a|acu \\ a|bcv \end{array} \right.
     Donc a|acu + bcv
     Donc a|c
                                                                                                                                                                                  Remarque (Inversion Modulo n):
Soit x \in \mathbb{Z}
\exists ?y \in \mathbb{Z}, xy \equiv 1[n]
(\iff \operatorname{dans} \mathbb{Z}/n\mathbb{Z}, \overline{x} + \overline{y} = \overline{1}?)
Avec n = 4: x 0123
   \begin{array}{c} 0\ 00000\\ 1\ 0123\\ 2\ 0202 \end{array} \left\{ \begin{array}{c} 1\ {\rm et}\ 3\ {\rm sont\ inversibles\ modulo}\ 4\\ 2\ n'{\rm est\ pas\ inversible\ modulo}\ 4 \end{array} \right.
  3\ 0321
3x \equiv 2[4]
\iff 3*3x \equiv 3*2[4]
\iff x \equiv 2[4]
\begin{array}{l} 2x \equiv 1[4] \\ \Longrightarrow 2*2x \equiv 2[4] \end{array}
\implies 0 \equiv 2[4]
```

Proposition (Congruences et Nombres Premiers): Soit p un nombre premier Alors $\forall x \in \mathbb{Z}, x \not\equiv 0[p] \Longrightarrow \exists y \in \mathbb{Z}, xy \equiv 1[p]$

Preuve: Voir précédent

```
Preuve: Soit x \in \mathbb{Z} tel que x \not\equiv 0[p] Soit y \in \mathbb{Z} xy \equiv 1[p] \iff \exists u \in \mathbb{Z}, xy = 1 + pu \iff \exists u \in \mathbb{Z}, xy - pu = 1

y \text{ existe } \iff x \land p = 1 \iff p \nmid x

Proposition (Inversibilité Modulo n): Soit n \in \mathbb{N}^*, x \in \mathbb{Z} x \text{ inversible modulo } n \iff x \land n = 1
```

Proposition (Petit Théorème de Fermat): Soit p premier, $a \in \mathbb{Z}$ $a^p \equiv a[p]$

```
Preuve:
Cas 1: a \equiv 0[p]
a^p \equiv 0^p[p]
a^p \equiv 0[p] \equiv a[p]
Cas 2 : a \not\equiv 0[p]
Alors a \wedge p = 1
On pose \forall i \in \mathbb{N}^*, r_i le reste de la division de ia par p
Soit i \in [\![1,p-1]\!]
r_i = 0 \Longrightarrow p|ia \Longrightarrow p|i Contradiction \forall i \in \mathbb{N}^*, r_i \neq 0
Soit (i, j) \in [1, p-1]^2, i \neq j
On suppose r_i = r_j, alors ia \equiv ja[p]
Or, a \land p = 1 donc a est inversible modulo p
Donc a \equiv j[p] donc i = j Contradiction
Ainsi, r_1...r_{p-1} \in [\![1,p-1]\!] distincts donc ils prennent toutes les valeurs de [\![1,p-1]\!]
i \longmapsto r_i est injective
\{r_1...r_{p-1}\} = [1, p-1]
Donc \prod_{k=1}^{p-1} r_i = (p-1)!
```

```
Donc \prod_{k=1}^{p-1} ia \equiv (p-1)![p]
Donc (p-1)!a^{p-1} \equiv (p-1)![p]
D'où (p-1)! \equiv 0[p] \iff p|1*2*3\cdots*(p-1)
\iff \exists i \in [1, p-1], p|i
Donc (p-1)! \not\equiv 0[p]
Donc (p-1)! \text{ est inversible modulo } p
Donc a^p \equiv 1[p]
Donc a^p \equiv a[p]
```

Onzième partie

Décomposition en Facteurs Premiers

Définition (Nombre Premier): Soit $n \in \mathbb{N}$ On dit que n est premier si $n \ge 2$ les seuls diviseurs entiers de n sont 1 et n

Proposition (Infinité de Nombres Premiers): Il y a une infinité de nombres premiers

Preuve:

On suppose qu'il n'y a qu'un nombre fini de nombres premiers $p_1 < \ldots < p_n$

On pose $N=p_n*...*p_1+1$ $N>p_n$ donc N n'est pas premier N a d'autres diviseurs positifs que 1 et N N est divisible par un nombre entre 2 et N-1

Soit $p = \min(\{k \in [2, N-1] | k | N\})$ p est premier (Tout diviseur de p divise aussi N) $\exists i \in [1, n], p_i = p$ $p_i | N$ $p_i | N - p_1 ... p_n$ $p_i | 1$ Contradiction

Donc il y a une infinité de nombres premiers

Proposition (Théorème Fondamental de l'Arithmétique): "Tout entier se décompose en un unique produit de nombres premiers"

Soient $n \in \mathbb{N}$ tell que $n \geqslant 2$ et \mathscr{P} l'ensemble des nombres premiers $\exists ! \nu : \mathscr{P} \longrightarrow \mathbb{N} \text{ telle que } \left\{ \begin{array}{l} \{p \in \mathscr{P} | \nu(p) \neq 0\} \text{ est fini} \\ n = \prod_{p \in \mathscr{P}} p^{\nu(p)} \end{array} \right.$

Preuve:

Existence : Déjà vue : Récurrence Forte (Chapitre 9)

 $\begin{array}{l} \text{Unicit\'e}: \text{Soit } n \geqslant 2 \text{ et } \nu: \mathscr{P} \longrightarrow \mathbb{N} \text{ telle que} \\ (*) \prod_{p \in \mathscr{P}} p^{\mu(p)} = \prod_{p \in \mathscr{P}} p^{\nu(p)} \text{ avec} \left\{ \begin{array}{l} \mu \neq \nu \\ M = \{p \in \mathscr{P} | \mu(p) \neq 0\} \text{ fini} \\ M = \{p \in \mathscr{P} | \nu(p) \neq 0\} \text{ fini} \\ n \text{ minimale pour cette propriét\'e} \end{array} \right.$

Soit $p\in M, \mu(p)\neq 0$ donc p|nSi $\nu(p)=0, \forall q\in \mathbb{N}, p\wedge q=1$ donc p|1 Contradiction avec le théorème de Gauß Donc on peut simplifier (*) par p On a alors 2 décompositions de $\frac{n}{p} < n$ Contradiction Donc n n'existe pas

árioura à 2

Proposition (Divisibilité et Nombres Premiers): Soient $(,b,c) \in \mathbb{N}^3$ supérieurs à 2 On pose $a = \prod_{p \in \mathscr{P}} p^{\alpha(p)}$ et $b = \prod_{p \in \mathscr{P}} p^{\beta(p)}$ $a|b \iff \forall p \in \mathscr{P}, \alpha(p) \leq \beta(p)$

Preuve:

" \Longrightarrow " : On suppose $a|b,\exists k,b=ak$

On pose $k = \prod p^{\kappa(p)}$

et donc
$$b = \prod_{p \in \mathscr{P}}^{p \in \mathscr{P}} p^{\alpha(p)} \prod_{p \in \mathscr{P}} p^{\kappa(p)} = \prod_{p \in \mathscr{P}} p^{\alpha(p) + \kappa(p)}$$

Par unicité de la décomposition en facteurs premiers, $\forall p \in \mathscr{P}, \beta(p) = \alpha(p) + \kappa(p) \geqslant \alpha(p)$

"
$$\Longleftarrow$$
" : On suppose $\forall p \in \mathscr{P}, \beta(p) \geqslant \alpha(p)$
On pose $\forall p \in \mathscr{P}, \kappa(p) = \beta(p) - \alpha(p) \in \mathbb{N}$

Tous les $\alpha(p)$ et $\beta(p)$ sont nuls à partir d'un certain rang C'est donc le cas aussi pour les $\kappa(p)$

Donc on a le droit de former le produit

$$\prod_{p \in \mathscr{P}} p^{\kappa(p)} \in \mathbb{N}$$

On pose
$$k=\prod_{p\in\mathscr{P}}p^{\kappa(p)}$$
 et $ak=\prod_{p\in\mathscr{P}}p^{\alpha(p)}\prod_{p\in\mathscr{P}}p^{\kappa(p)}=\prod_{p\in\mathscr{P}}p^{\alpha(p)+\kappa(p)}=\prod_{p\in\mathscr{P}}p^{\beta(p)}=b$

Proposition (Produit de Facteurs Premiers, PGCD et PPCM): Avec les notations précédentes,

$$a\wedge b=\prod_{p\in\mathscr{P}}p^{\min(\alpha(p),\beta(p))}\text{ et }a\vee b=\prod_{p\in\mathscr{P}}p^{\max(\alpha(p),\beta(p))}$$

Corollaire: $(a \wedge b)(a \vee b) = ab$

Preuve:

$$(a \wedge b)(a \vee b) = \prod_{p \in \mathscr{P}} p^{\min(\alpha(p),\beta(p))} \prod_{p \in \mathscr{P}} p^{\max(\alpha(p),\beta(p))}$$
$$= \prod_{p \in \mathscr{P}} p^{\min(\alpha(p),\beta(p)) + \max(\alpha(p),\beta(p))}$$
$$= \prod_{p \in \mathscr{P}} p^{\alpha(p) + \beta(p)} = ab$$