CHAPITRE 19

TABLE DES MATIÈRES

Ι	Premières propriétés	2
II	Noyau et image	5
III	Théorème du rang	7
IV	Formes linéaires	10
\mathbf{V}	Projections et symétries	14

Première partie

Premières propriétés

Définition: Soient E et F deux \mathbb{K} -espaces vectoriels et $f:E\to F.$ On dit que f est $\underline{\text{linéaire}}$ si

 $\forall (x,y) \in E^2, \forall (\alpha,\beta) \in \mathbb{K}^2, f(\alpha x + \beta y) = \alpha f(x) + \beta f(y)$

Définition: On dit qu'un problème est <u>linéaire</u> s'il se présente sous la forme :

Résoudre $\varphi(x) = y$

où l'inconnue est $x \in E, y$ est un paramètre de F avec $\varphi : E \to F$ linéaire.

Remarque (Notation):

Soient E et F deux \mathbb{K} -espaces vectoriels.

L'ensemble des applications linéaires de E dans F est $\mathscr{L}(E,F).$

Si F=E, alors on note plus simplement $\mathscr{L}(E)$ à la place de $\mathscr{L}(E,E).$

Les éléments de $\mathcal{L}(E)$ sont appelés endomorphismes (linéaires) de E.

Proposition: Soit $f \in \mathcal{L}(E,F)$, $g \in \mathcal{L}(F,G)$. Alors $g \circ f \in \mathcal{L}(E,G)$.

Proposition: $\mathcal{L}(E,F)$ est un sous-espace vectoriel de F^E .

Proposition: $(\mathcal{L}(E), +, \circ, \cdot)$ est une K-algèbre (non commutative en général).

Corollaire: Soit $P \in \mathbb{K}[X]$ et $u \in \mathcal{L}(E)$. On peut former $P(u) \in \mathcal{L}(X)$: on dit que P(u) est un polynôme d'endomorphisme.

Proposition: Soit $f \in \mathcal{L}(E, F)$ bijective. Alors $f^{-1} \in \mathcal{L}(F, E)$.

Remarque (Notation):

On note $\mathrm{GL}(E)$ l'ensemble des endomorphismes de E bijectifs, $\mathrm{GL}(E,F)$ l'ensemble des applications linéaires de E dans F bijectives.

Les éléments de GL(E) sont appelés <u>automorphismes (linéaires)</u> de E.

Corollaire: $\operatorname{GL}(E)$ est un sous-groupe de $(S(E), \circ)$

Définition: GL(E) est dit " le groupe linéaire de E".

Deuxième partie

Noyau et image

Proposition: Soit $f \in \mathcal{L}(E,F), U$ un sous-espace vectoriel de E et V un sous-espace vectoriel de F.

- 1. f(U) est un sous-espace vectoriel de F.
- 2. $f^{-1}(V)$ est un sous-espace vectoriel de E.

Corollaire: Soit $f \in \mathcal{L}(E, F)$.

1. $\operatorname{Ker}(f) = f^{-1}(\{0_F\}) = \{x \in E \mid f(x) = 0_E\}$ est un sous-espace vectoriel de E.

2. $\mathrm{Im}(f)=f(E)=\{f(u)\mid u\in E\}$ est un sous-espace vectoriel de E.

Remarque (Rappel): Soit $f \in \mathcal{L}(E, F)$

$$f$$
 injective \iff $\operatorname{Ker}(f) = \{0_E\}$
 f surjective \iff $\operatorname{Im}(f) = F$

6

Troisième partie

Théorème du rang

Dans ce paragraphe, E est un \mathbb{K} -espace vectoriel de dimension finie.

Proposition: Soit $f: E \to F$ un isomorphisme (i.e. une application linéaire bijective). Alors, $\dim(E) = \dim(F)$

La première partie de la preuve précédente justifie le résultat suivant.

Proposition: Soit $f \in \mathcal{L}(E, F)$ injective. $\mathcal{L} = (e_1, \dots, e_p)$ une famille libre de E. Alors $(f(e_1), \dots, f(e_n))$ est une famille libre de F. En particulier, $\dim(F) \geqslant \dim(E)$.

La deuxième partie de la preuve prouve :

Proposition: Soit $f \in \mathcal{L}(E, F)$ surjective et $\mathscr{G} = (e_1, \ldots, e_p)$ une famille génératrice de E. Alors $(f(e_1), \ldots, f(e_p))$ est une famille génératrice de F. En particulier,

$$\dim(F) \leqslant \dim(E)$$

Théorème (Théorème du rang): Soit $f \in \mathcal{L}(E, F)$.

$$\dim(E) = \dim(\operatorname{Ker}(f)) + \dim(\operatorname{Im}(f))$$

Remarque:

Soit E un \mathbb{K} -espace vectoriel de dimension finie, et F un sous-espace vectoriel de E.

<u>Cas 1</u> $F = \{0_E\}$, alors E est un supplémentaire de F.

 $Cas\ 2$ $F \neq \{0_E\}$. Soit $\mathscr{B} = (e_1, \dots, e_p)$ une base de F. Alors \mathscr{B} est une famille libre de E. On complète \mathscr{B} en une base $(e_1, \dots, e_p, e_{p+1}, \dots, e_n)$ de E. On pose $G = Vect(e_{p+1}, \dots, e_n)$. On démontre que

$$F \oplus G = E$$

Corollaire: Soient E et F deux \mathbb{K} -espaces vectoriels de <u>même dimension finie</u> et $f \in \mathcal{L}(E,F)$.

$$\begin{array}{ccc} f \text{ injective} & \Longleftrightarrow & f \text{ surjective} \\ & \Longleftrightarrow & f \text{ bijective} \end{array}$$

Corollaire: Soit $f \in \mathcal{L}(E)$ avec E de dimension finie. Alors,

$$f \in GL(E) \iff f \text{ injective } \iff f \text{ surjective}$$

Remarque

Soit $f \in \mathcal{L}(E,F)$, $\mathcal{B} = (e_1,\ldots,e_n)$ une base de E. Alors

$$Im(f) = Vect (f(e_1), \dots, f(e_n))$$

 $\dim (\operatorname{Im}(f)) = \operatorname{rg} (f(e_1), \dots, f(e_n))$

Définition: Soit $f \in \mathcal{L}(E, F)$. Le <u>rang</u> de f est

$$rg(f) = dim (Im(f))$$

Quatrième partie

Formes linéaires

Définition: Soit E un \mathbb{K} -espace vectoriel. Une <u>forme linéaire</u> sur E est une application linéaire de E dans \mathbb{K} .

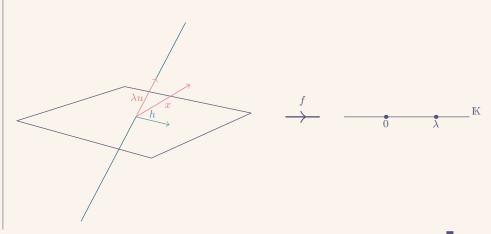
L'ensemble des formes linéaires est noté $E^*=\mathcal{L}(E,\mathbb{K}).$ E^* est appelé <u>espace dual</u> de E.

Proposition: Toute forme linéaire est soit nulle, soit surjective.

Proposition: Soit E un \mathbb{K} -espace vectoriel de dimension finie n et $f \in E^* \setminus \{0\}$. Alors $\operatorname{Ker}(f)$ est de dimension n-1.

Proposition: Soit E un \mathbb{K} -espace vectoriel de dimension finie n et H un sous-espace vectoriel de E de dimension n-1. Alors,

$$\exists f \in E^*, \operatorname{Ker}(f) = H$$



Proposition: Avec les notations précédentes, $\{f \in E^* \mid \operatorname{Ker}(f) = H\}$ est une droite de E^* privée de l'application nulle. En d'autres termes, les équations de H sont 2 à 2 proportionelles.

Définition: Soit E un \mathbb{K} -espace vectoriel et H un sous-espace vectoriel de E. On dit que H est un <u>hyperplan</u> de E s'il existe une droite D de E telle que

$$H \oplus D = E$$

En reprenant les démonstrations précédentes, on a encore les résultats suivants :

Proposition: Soit H un hyperplan de E. Alors, $\{f \in E^* \mid \text{Ker}(f) = H\}$ est une droite de E^* privée de l'application nulle.

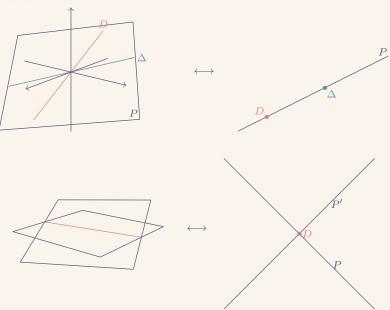
Proposition: Soit $f \in E^*$ non nulle. Alors $\operatorname{Ker}(f)$ est un hyperplan de E.

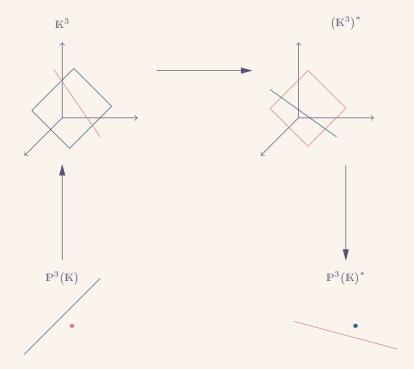
HORS-PROGRAMME

 $\mathbb{P}^3(\mathbb{K}) = \{D \setminus \{0\} \mid D \text{ droite vectorielle de } \mathbb{K}^3\}$

Une <u>droite</u> projective de $\mathbb{P}^3(\mathbb{K})$ est un plan vectoriel de \mathbb{K}^3 privé de 0.

À faire : schéma A





À faire : schémas B et C $h(N) \bullet h(M) \qquad h(O) \longrightarrow h(\Delta)$

Cinquième partie

Projections et symétries

 Définition: Soit E un $\mathbb K\text{-espace}$ vectoriel, F et G deux sous-espaces de E supplémentaires :

$$E=F\oplus G$$

Soit $x \in E$.

$$\exists!(a,b)\in F\times G, x=a+b$$

Le vecteur a est appelé projeté de x sur F parallèlement à G.

Le vecteur b est appelé projeté de x sur G parallèlement à F.

La projection sur F parallèlement à G est l'application qui à $x\in E$ associe son projeté sur F parallèlement à G.

Proposition: Soient F et G deux sous-espaces vectoriels de E supplémentaires et p la projection sur F parallèlement à G.

- 1. $p \in \mathcal{L}(E)$
- 2. $p_{|F} = \mathrm{id}_F$ et $p_{|G} = 0$
- 3. $p \circ p = p$
- 4. id $_E-p$ est la projection sur G parallèlement à F.

Définition: Soit $f \in \mathcal{L}(E)$. On dit que f est un projecteur si $f \circ f = f$

Proposition: Soit f un projecteur de E. Alors f est la projection sur Im(f) parallèlement à Ker(f). En particulier,

$$\operatorname{Im}(f) \oplus \operatorname{Ker}(f) = E$$

Définition: Soient F et G supplémentaires dans $E:E=F\oplus G$

Soit $x \in E.$ On décompose x :

$$x = a + b \text{ avec } \begin{cases} a \in F \\ b \in G \end{cases}$$

et on forme

$$y = a - b$$

On dit que y est le <u>symétrique de x par rapport à F parallèlement à G La <u>symétrie par rapport à F parallèlement à G est l'application qui à tout $x \in E$ associe son symétrique parallèlement à G par rapport à F.</u></u>

V

Proposition: Soient F et G supplémentaires dans E, δ la symétrie par rapport à Fparallèlement à G.

- 1. $\delta \in \mathcal{L}(E)$ 2. $\delta_{|E} = \mathrm{id}_F \text{ et } \delta_{|G} = -\mathrm{id}_G$ 3. $\delta \circ \delta = \mathrm{id}_E$

Définition: Soit $f \in \mathcal{L}(E)$. On dit que f est <u>involutive</u> si $f \circ f = \mathrm{id}_E$.

Proposition: Soit $f \in \mathcal{L}(E)$ involutif. Alors f est la symétrie par rapport à $\mathrm{Ker}(f-\mathrm{id}_E)$ parallèlement à $\mathrm{Ker}(f+\mathrm{id}_E)$. En particulier,

$$\operatorname{Ker}(f - \operatorname{id}_E) \oplus \operatorname{Ker}(f + \operatorname{id}_E) = E$$