Chapitre 28

Sous-e

TABLE DES MATIÈRES

[Espace affine (Hors Programme)	2
ΙΙ	Sous-espaces affines	5
III	Parallèlisme et hyperplans	7
ſV	Renère affine	q

Première partie

Espace affine (Hors Programme)

MOTIVATION GÉOMÉTRIQUE:

Dans les petites classes, la géométrie du plan distingue deux types d'objets élémentaires :

— le point

Ι

— le vecteur

reliés par la notion de translation.

Par exemple, une droite peut être décrite avec un point et un vecteur :

Soit K un corps.

Définition: Un K-espace affine est un triplet (E, \vec{E}, τ) où

- E est un ensemble;
- $-\vec{E}$ est un K-espace vectoriel;
- $\tau: E \times \overrightarrow{E} \longrightarrow E$ telle que

$$\begin{cases} \forall M \in E, \, \tau\left(M, \, \overrightarrow{0}\right) = M, \\ \forall M \in E, \, \forall \left(\overrightarrow{u}, \, \overrightarrow{v}\right) \in \overrightarrow{E}^2, \tau\Big(\tau\left(M, \, \overrightarrow{u}\right), \, \overrightarrow{v}\Big) = \tau\left(M, \, \overrightarrow{u} + \overrightarrow{v}\right), \\ \forall (A, B) \in E^2, \, \exists ! \, \overrightarrow{u} \in \overrightarrow{E}, \tau\left(A, \, \overrightarrow{u}\right) = B. \end{cases}$$

Les éléments de E sont appelés <u>points</u>, ceux de \overrightarrow{E} <u>vecteurs</u>.

Pour tout $\vec{u} \in \vec{E}$, l'application

$$\begin{array}{ccc} E & \longrightarrow & E \\ M & \longmapsto & \tau \left(M \ \overrightarrow{\eta} \right) \end{array}$$

est la <u>translation</u> de vecteur \vec{u} .

En général, pour $M \in E$ et $\overrightarrow{u} \in \overrightarrow{E}$, au lieu d'écrire $\tau(M + \overrightarrow{u})$, on écrit $M + \overrightarrow{u}$. Soient $(A,B) \in E^2$. L'unique vecteur \overrightarrow{u} tel que $A + \overrightarrow{u} = B$ est noté $\overrightarrow{AB} = B - A$.

Proposition: Soit E un \mathbb{K} -espace vectoriel. Alors (E, E, +) est un \mathbb{K} -espace affine. \square

Proposition: Soit $\left(E,\overrightarrow{E},\tau\right)$ un K-espace affine. Si $E\neq\varnothing$, $\overrightarrow{E}=\left\{\overrightarrow{AB}\mid (A,B)\in\overrightarrow{E}\right\}.$

$$\overrightarrow{E} = \left\{ \overrightarrow{AB} \mid (A, B) \in \overrightarrow{E} \right\}$$

Ι

Remarque:

On a même démontré que, pour tout $A \in E,$ l'application

$$\varphi_A: \overrightarrow{E} \longrightarrow E$$

$$\overrightarrow{u} \longmapsto A + \overrightarrow{u}$$

est bijective. On dit qu'on a vectorialisé E au point A :

$$\begin{cases} M+N := A + \overrightarrow{AM} + \overrightarrow{AN} \\ \lambda N := A + \lambda \overrightarrow{AM} \end{cases}$$

Proposition: Soit (E, \vec{E}, τ) un K-espace affine. 1. $\forall A \in E, \ \overrightarrow{AA} = \vec{0};$ 2. $\forall A, B, C \in E, \ \overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC};$ 3. $\forall A, B \in E, \ \overrightarrow{BA} = -\overrightarrow{AB}.$

4

Deuxième partie

Sous-espaces affines

Définition: Soit (E, \vec{E}, τ) un \mathbb{K} -espace affine et $F \in \mathscr{P}(E) \setminus \{\emptyset\}$.

Pour tout $A \in F$, on pose $\overrightarrow{F_A} = \left\{ \overrightarrow{AB} \mid B \in F \right\}$. On dit que F est un <u>sous-espace affine</u> de $\left(E, \overrightarrow{E}, \tau \right)$ s'il existe $A \in F$ tel que $\overrightarrow{F_A}$ est un sous-espace vectoriel de \overrightarrow{E} .

 $\textbf{Proposition:} \ \ \, \text{Avec les notations précédentes, } \left(F,\overrightarrow{F_A},\tau_{\left|F\times\overrightarrow{F_A}\right.}\right) \text{ est un espace affine.}$

Proposition: Soit F un sous-espace affine de $\left(E, \overrightarrow{E}, \tau\right)$. Alors

$$\forall (A,B) \in F^2, \ \overrightarrow{F_A} = \overrightarrow{F_B}.$$

Corollaire: Soit $f \in \mathcal{L}(E, F)$ et $y \in F$.

Les solutions de l'équation f(x) = y est un sous-espace affine de direction $\ker f$.

Proposition: Soit $(F_i)_{i \in I}$ une famille de sous-espaces affines de F. Alors, $\bigcap_{i \in I} F_i$ est soit vide, soit un sous-espace affine de F.

De même que pour les groupes et les espaces vectoriels, on peut définir le sous-espace engendré par une partie de E.

Proposition – **Définition:** Soit $A \in \mathcal{P}(E)$. Le <u>sous-espace affine engendré par A</u> est

$$\bigcap_{F \text{ sous-espace affine de } E} F.$$

C'est le plus petit (au sens de l'inclusion) sous-espace affine contenant A.

Remarque:

Si E est un \mathbb{K} -espace vectoriel et F un sous-espace affine de E, alors

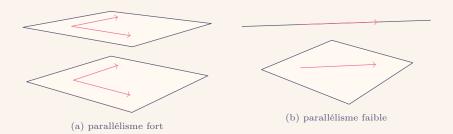
$$\begin{cases} \forall A \in F, \, F = A + \overrightarrow{F} = \{A + \overrightarrow{u} \mid \overrightarrow{u} \in \overrightarrow{F}\}, \\ \overrightarrow{F} \text{ sous-espace vectoriel de } E. \end{cases}$$

Troisième partie

Parallèlisme et hyperplans

Définition: Soit $\left(E,\overrightarrow{E},\tau\right)$ un espace affine, F et G deux sous-espaces affines de E.

- 1. On dit que F et G sont <u>fortement parallèles</u> si $\overrightarrow{F} = \overrightarrow{G}.$
- 2. On dit que F et G sont <u>faiblement parallèles</u> si $\overrightarrow{F} \subset \overrightarrow{G}$ ou $\overrightarrow{G} \subset \overrightarrow{F}$.



Définition: Soit F un sous-espace affine de $\left(E,\overrightarrow{E},\tau\right)$. L'espace

$$\overrightarrow{F} = \left\{ \overrightarrow{AB} \mid A, B \in F \right\}$$

est appelé <u>direction</u> de F.

Quatrième partie

Repère affine

Définition: Soit F un sous-espaca affine de E. Un repère de F est la donnée d'un point $A \in F$ ("l'origine du repère") et d'une base $\mathscr{B} = (\overrightarrow{e_i})_{i \in I}$ de \overrightarrow{F} ("vecteurs direction").

Proposition – Définition: Soit F un sous-espace affine de E, et $\mathscr{R}=(A,\overrightarrow{e_1},\ldots,\overrightarrow{e_n})$ un repère de F. Alors, pour tout $B\in F$,

$$\exists!(\lambda_1,\ldots,\lambda_n)\in\mathbb{K}^n,\ B=A+\sum_{i=1}^n\lambda_i\overrightarrow{e_i}.$$

On dit que $(\lambda_1, \ldots, \lambda_n)$ sont les <u>coordonées</u> de B.

Remarque:

Les solutions d'un problème linéaire forment un espace sous-affine de direction les solutions du système homogène associé.