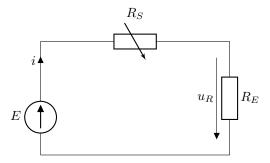

Modélisation de électrique

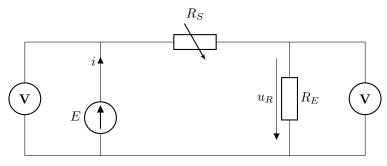
Hugo Salou Iwan Derouet Les enceintes, casques et autres appareils HiFi possèdent une résistance intérieure. Afin de pouvoir les modéliser, nous devons trouver la valeur de cette résistance. Par exemple, un ampli de chaine HiFi a une résistance entre 3 et 6 Ω et une enceinte a une résistance entre 4 et 5 Ω .


Nous pouvons déterminer la valeur de cette résistance en réalisant le circuit suivant :

Ici, R_S représente la résistance de sortie d'un appareil (par exemple la résistance de l'ampli) et R_E représente la résistance d'entrée d'un appareil (par exemple la résistance l'enceinte).

Dans le cadre du TP, on mesure la résistance d'un casque puis celle de la carte son de l'ordinateur.

Pour mesurer la résistance du casque R_E , on utilise une résistance variable pour R_S comme montré sur le circuit suivant.


On peut déterminer la valeur de u_R en fonction de E, R_S et R_E à l'aide de la formule du pont diviseur de tension :

$$u_R = \frac{R_E}{R_S + R_E}$$

On peut simplifier cette expression si $R_S = R_E = R$:

$$u_R = \frac{\cancel{R}}{2\cancel{R}}E = \frac{1}{2}E$$

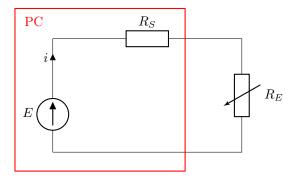
On mesure donc E en branchant un voltmètre en parallèle du générateur de tension et on mesure u_R en branchant un second voltmètre en parallèle de la résistance R_E (dans le cadre du TP, on branche le voltmètre en dérivation du casque).

On fait varier la valeur de R_S afin d'obtenir $u_R = \frac{1}{2}E$.

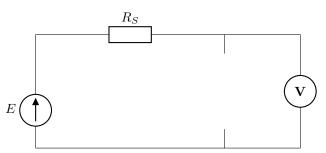
On a mesuré :

—
$$E = 1,53 \text{ V}$$

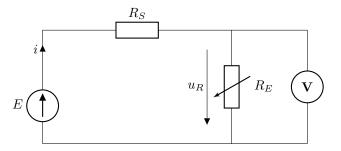
—
$$u_R = 0,772 \text{ V} \text{ avec } R_S = 30 \Omega$$


En mesurant la résistance du casque à l'aide d'un ohmmètre, on sait que $R_E = 33 \Omega$. Cette différence de résistance peut-être due à plusieurs facteurs :

- Les branchements : en déplaçant un des cables pendant la mesure, la valeur de u_R et même celle de E peut varier
- Les mesures des voltmètre : il n'y a qu'une précision limitée sur les voltmètres
- Le courant est alternatif, ce qui change légèrement les valeures notamment celle de E
- La résistance du casque n'est pas forcément constante en fonction de la fréquence du courant (expliqué après)


La fréquence f du courant a un effet sur les mesures.

f (Hz)	E(V)	u_R (V)	$R_S(\Omega)$	$R_E (\Omega)$
240	1,55	0,727	30	27
440	1,53	0,772	30	30
640	1,54	0,709	30	26


On peut maintenant mesurer la résistance de sortie (résistance interne de la carte son de l'ordinateur).

On ne peut pas procéder de la même manière que pour le casque : la valeur de E n'est pas mesurable directement (on ne peut pas brancher un voltmètre dans le PC). Mais on peut quand même la mesurée. On met R_E à la valeur maximale de la résisance variable (10 M Ω). Dans cette situation, le circuit se comporte comme s'il avait une discontinuité à l'emplacement de la résisance. En mesurant u_R , on mesure E car dans cette situation, $u_R = E$.

On mesure E=1,109 V. En conservant le même circuit, on réalise la même procédure que la mesure de la résistance du casque : on fait varier R_E jusqu'à ce que $u_R=\frac{1}{2}E$, et on a donc $R_E=R_S$

Pour $R = 75 \Omega$, on obtient $u_R = 0,551 \text{ V}$.

Cette différence de résistance peut-être due à plusieurs facteurs :

- Les branchements : en déplaçant un des cables pendant la mesure, la valeur de u_R et même celle de E peut varier
- Les mesures des voltmètre : il n'y a qu'une précision limitée sur le voltmètre
- Le courant est alternatif, ce qui change légèrement les valeures notamment celle de ${\cal E}$
- La résistance du casque n'est pas forcément constante en fonction de la fréquence du courant (la mesure a été faite avec $f=440~{\rm Hz}$