Formal proof of the Gallois correspondance in Homotopy Type Theory Internship at LIX, École Polytechnique

September, 1st 2025

Hugo SALOU

Outline

- 1. Algebraic Topology
- **2.** HoTT
- 3. AGDA
- **4.** The Theorem
- **5.** The Proof

Algebraic Topology			

Section 1

Algebraic Topology

Algebraic Topology			

Paths and loops

Definition

- We write I the *unit interval* [0, 1].
- A *path* from *x* to *y* is a continuous map *p* from $\mathbf{I} \to X$ where p(0) = x and p(1) = y.
- A *loop* at x is a path from x to x.

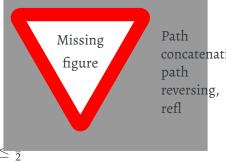
Algebraic Topology			
0	.1		

Operations on paths

Definition

- The *constant loop* at x is $refl_x$ defined by $refl_x(t) := x$.
- The *reverse* p^{-1} of a path p is defined by $p^{-1}(t) := p(1-t)$.
- The *concatenation* $p \cdot q$ of two paths p and q such that p(1) = q(0) is defined by

$$(p \cdot q)(t) := \begin{cases} p(2t) & \text{if } 0 \le t \le \frac{1}{2} \\ q(2t-1) & \text{if } \frac{1}{2} \le t \le 1 \end{cases}$$



ALGEBRAIC TOPOLOCY HOTT ACDA THE THEOREM THE PROOF TODO LIST 000€00000000 0000000 00 00 00

You shouldn't use *strict* equality

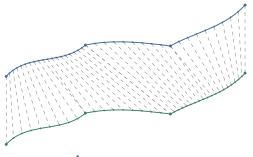


FIGURE 1 | Strict equality is too restrictive

Remark!

1.
$$p \cdot (q \cdot r) \neq (p \cdot q) \cdot r$$

2. $p \cdot \operatorname{refl}_y \neq p$
3. $\operatorname{refl}_x \cdot p \neq p$
4. $p \cdot p^{-1} \neq \operatorname{refl}_x$
5. $p^{-1} \cdot p \neq \operatorname{refl}_y$

Algebraic Topology			

Homotopy is the key

Definition

Given two paths *p* and *q* from *x* to *y*, a *homotopy* from *p* to *q* is a continuous map

$$H: \mathbf{I} \times \mathbf{I} \to X$$
,

such that:

-
$$H(0,t) = p(t);$$

- $H(1,t) = q(t);$
- $H(t,0) = x;$

$$- H(t,1) = y.$$

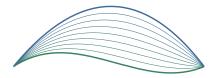


FIGURE 2 | Homotopy between paths

We write $p \sim q$ where there exists a homotopy from p to q. It's an equivalence relation!

ALGEBRAIC TOPOLOGY

H011 00000000 AGDA OO The Theorem

HE PROOF

TODO LIST

A homotopy is a **path between paths**: $ilde{H}: \mathbf{I} ightarrow ext{Space}$ of paths from x to y

ALGEBRAIC TOPOLOGY

H011 00000000 AGDA OO The Theorem 00 HE PROOF

TODO LIST

A homotopy is a **path between paths**: $ilde{H}: \mathbf{I} ightarrow ext{Space}$ of paths from x to y

... except we'd have to put a topology on the space of paths.

Algebraic Topology			

We fixed the "equality issues":

- 1. $p \cdot (q \cdot r) \sim (p \cdot q) \cdot r$
- 2. $p \cdot \operatorname{refl}_y \sim p$
- 3. refl_x · $p \sim p$
- 4. $p \cdot p^{-1} \sim \operatorname{refl}_x$
- 5. $p^{-1} \cdot p \sim \operatorname{refl}_y$
- 6. if $p \sim q$ then $p^{-1} \sim q^{-1}$
- 7. if $p \sim q$ and $r \sim s$ then $p \cdot r \sim q \cdot s$.

ALGEBRAIC TOPOLOGY			

Fundamental group

Definition

The *fundamental group* of (X, x) is the set of homotopy classes of loops at *x*:

 $\pi_1(X, x) := \frac{\operatorname{Set of loops at} x}{\sim}.$

It's a group with path concatenation.

Algebraic Topology			

Some examples...

Example

The fundamental group of the sphere \mathbb{S}^2 is trivial.

FIGURE 3 Any loop is homotopic to refl in \mathbb{S}^2

Example

The fundamental group of the circle \mathbb{S}^1 is isomorphic to \mathbb{Z} . There are some loops ℓ such that, to "transform" ℓ to refl require tearing ℓ , as there is a hole in \mathbb{S}^1 .

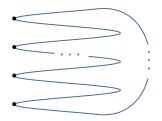


FIGURE 3 | "Shape" of loops in \mathbb{S}^1

ALGEBRAIC TOPOLOGY			

It's a functor!

Remark!

A continuous pointed map $f:X\to Y$ induces a map

$$\pi_1(f):\pi_1(X,x)\longrightarrow \pi_1(Y,f(x))$$
$$[c]\longmapsto [f\circ c].$$

And, we have:

-
$$\pi_1(\operatorname{id}_X) = \operatorname{id}_{\pi_1(X)};$$

- $\pi_1(f \circ g) = \pi_1(f) \circ \pi_1(g).$

ALGEBRAIC TOPOLOGY			

Covering spaces

Definition

- A *covering space* of *X* is:
 - a space \tilde{X} ,
 - a map $p: \tilde{X} \to X$

such that, for every $x \in X$, there exists

- a neighborhood U of x,
- a discrete space D,
- and a homeomorphism $h: U \times D \rightarrow p^{-1}(U)$ such that p(h(x', v)) = x'.

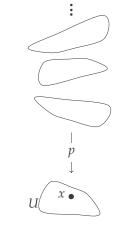


FIGURE 4 Covering space, locally

Algebraic Topology			

Definition

A *morphism of covering spaces* is ...Continuer à papoter des revêtements et de la correspondance de Gallois

Algebraic Topology	HoTT ●0000000	AGDA OO	The Theorem 00	The Proof OO	Todo list

Section 2

HoTT

ALCEBRAIC TOPOLOCY HOTT ACDA THE THEOREM THE PROOF TODO LIST

Types & propositions

In "regular" type theory, to **prove** a statement, we write it as a type and then we write a **program** with the corresponding type:

Curry–Howard correspondance!

We do the same thing in HoTT (except "proposition" doesn't always mean "type" in HoTT).

	HoTT oo€ooooo		
- 1			

Dependant types

In HoTT, some types are *dependants*.

- DEPENDANT FUNCTIONS.
 - we can have f(x) : B(x) (where x : A), the output type can depend on the input;
 - we write $f : \prod_{x:A} B(x)$ for the type of such dependant functions;
 - it's a generalization of the ∀ and the ⇒ (with the Curry–Howard correspondance).

- DEPENDANT PAIRS.

- we can have a pair (x, y) where x : A and y : B(x), the type of the second element can depend on the first:
- we write $(x, y) : \sum_{x:A} B(x)$ for the type of such dependant pairs;
- it's a generalization of the ∃* and the × (with the Curry–Howard correspondance).

ALGEBRAIC TOPOLOGY HOTT AGDA THE THEOREM THE PROOF TODO LIST

As we saw, strict equality is **too restrictive** for objects defined "up to continuous deformations". We can't interpret $x =_A y$ as "x and y are exactly equal."

How should we interpret $x =_A y$ then?

In HoTT, we interpret it as "there is a *path* from *x* to *y* in type *A*":

 $equality \quad \rightsquigarrow \quad identification/identity.$

Inductive principle of identity

Axiom

To prove a property \mathcal{P} on identifications between x and y, it suffices to show that it holds for the constant path refl_x.

Written differently:

Axiom

Fix a point x and let \mathcal{P} be a property on a point y and a path p from x to y. Then, to show that \mathcal{P} holds for all pairs (y, p), it suffices to show that $\mathcal{P}(x, \operatorname{refl}_x)$ holds.

HoTT 00000●00		

HoTT 000000●0		

Usually we have this in head:

if
$$p : x =_A y$$
 then $x \equiv y$ and $p \equiv \operatorname{refl}_x$.

This is an axiom called Uniqueness of Identity Proofs, UIP.

In HoTT, that's not always true.

When such an implication in type *A* holds, we call *A* a (*mere*) *proposition*: there is at most one proof of a proposition.

HoTT 0000000●		

Continuity

Lemma

If f:A
ightarrow B is a function then, for any x,y:A there exists an operation

$$\mathsf{ap}_f: (x =_A y) \to (f(x) =_B f(y)),$$

such that $ap_f(refl_x) = refl_{f(x)}$.

	H0TT 0000000		
Continuity			

Lemma

If f:A
ightarrow B is a function then, for any x,y:A there exists an operation

$$\mathsf{ap}_f: (x =_A y) \to (f(x) =_B f(y)),$$

such that $\operatorname{ap}_f(\operatorname{refl}_x) = \operatorname{refl}_{f(x)}$.

Proof

To define $ap_f(p)$ for all p : x = y, it suffices, by induction, to assume that path p is $refl_x$. In this case, we define

$$\operatorname{ap}_f(p) :\equiv \operatorname{refl}_{f(x)} : f(x) =_B f(x).$$

	HoTT 0000000		
- · ·			

Continuity

Lemma

If $f: A \rightarrow B$ is a function then, for any x, y: A there exists an operation

$$\mathsf{ap}_f: (x =_A y) \to (f(x) =_B f(y)),$$

such that $\operatorname{ap}_f(\operatorname{refl}_x) = \operatorname{refl}_{f(x)}$.

Interpreting this lemma: if there is a path between x and y then there is a path between f(x) and f(y). **Every function in HoTT is inherently continuous!**

	AGDA ●O		

Section 3

AGDA

Algebraic Topology HoTT ACDA The Theorem The Proof Todo 00000000000 0000000 00 00	
--	--

	The Theorem ●0	

Section 4

The Theorem

	The Theorem O●	

Some notations...

We write:

$$Covering(A, a) := \sum_{(B,b): \mathcal{U}_{\bullet}} \sum_{p:(B,b) \to (A,a)} \prod_{x:A} isSet(fib_p(x)).$$

		The Proof ●O	

Section 5

The Proof

					The Proof O●	
--	--	--	--	--	-----------------	--

		Todo list

Au boulot Hugo !

Figure: Path & loop	4
Figure: Path concatenation, path reversing, refl	5
Figure: Inductive principle of identity	22