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Section 1

Algebraic Topology
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Paths and loops

Definition
– Wewrite I the unit interval [0, 1].
– A path from x to y is a continuous
map p from I → X where
p(0) = x and p(1) = y.

– A loop at x is a path from x to x.

Path
&
loop
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Operations on paths

Definition
– The constant loop at x is reflx
defined by reflx(t) := x.

– The reverse p−1 of a path p is
defined by p−1(t) := p(1 − t).

– The concatenation p q of two
paths p and q such that
p(1) = q(0) is defined by

(p q)(t) :=

{
p(2t) if 0 ≤ t ≤ 1

2

q(2t − 1) if 1
2 ≤ t ≤ 1.

Path
concatenation,
path
reversing,
refl
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You shouldn’t use strict equality

Figure 1 Strict equality is too restrictive

Remark!
1. p (q r) =7 (p q) r
2. p refly =7 p
3. reflx p =7 p
4. p p−1 =7 reflx
5. p−1 p =7 refly
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Homotopy is the key

Definition
Given two paths p and q from x
to y, a homotopy from p to q is a
continuous map

H : I × I → X,

such that:
– H(0, t) = p(t);
– H(1, t) = q(t);
– H(t, 0) = x;
– H(t, 1) = y.

Figure 2 Homotopy between paths

We write p ∼ q where there exists a
homotopy from p to q. It’s an equivalence
relation!
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A homotopy is a path between paths:

H̃ : I → Space of paths from x to y

… except we’d have to put a topology on the space of paths.
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A homotopy is a path between paths:

H̃ : I → Space of paths from x to y

… except we’d have to put a topology on the space of paths.
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We fixed the “equality issues”:

1. p (q r) ∼ (p q) r

2. p refly ∼ p

3. reflx p ∼ p

4. p p−1 ∼ reflx

5. p−1 p ∼ refly

6. if p ∼ q then p−1 ∼ q−1

7. if p ∼ q and r ∼ s then p r ∼ q s.
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Fundamental group

Definition
The fundamental group of (X, x) is the set of homotopy classes of loops
at x:

π1(X, x) := Set of loops at x/
∼.

It’s a group with path concatenation.
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Some examples…

Example
The fundamental group of the sphere S2 is trivial.

Figure 3 Any loop is homotopic to refl in S2
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Some examples…

Example
The fundamental group of the circle S1 is isomorphic toZ.
There are some loops ` such that, to “transform” ` to refl require
tearing `, as there is a hole in S1.

· · · ···

Figure 3 “Shape” of loops in S1
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It’s a functor!

Remark!
A continuous pointed map f : X → Y induces a map

π1( f ) : π1(X, x) −→ π1(Y, f (x))
[ c ] 7−→ [ f ◦ c ].

And, we have:
– π1(idX) = idπ1(X);
– π1( f ◦ g) = π1( f ) ◦ π1(g).
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Covering spaces

Definition
A covering space of X is:
– a space X̃,
– a map p : X̃ → X

such that, for every x ∈ X, there exists
– a neighborhoodU of x,
– a discrete space D,
– and a homeomorphism

h : U × D → p−1(U)
such that p(h(x′, v)) = x′.

•

p

x
U

...

Figure 4 Covering space, locally
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Definition
Amorphismof covering spaces is …Continuer à papoter des revêtements
et de la correspondance de Gallois
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Section 2

HoTT
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Types & propositions

In “regular” type theory, to prove a statement, we write it as a type and
then we write a programwith the corresponding type:

Curry–Howard correspondance!

We do the same thing in HoTT (except “proposition” doesn’t always
mean “type” in HoTT).
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Dependant types

In HoTT, some types are dependants.

– dependant functions.
I we can have f (x) : B(x) (where x : A), the output type can

depend on the input;

I we write f : ∏x:A B(x) for the type of such dependant functions;

I it’s a generalization of the ∀ and the⇒ (with the Curry–Howard
correspondance).

– dependantpairs.
I we can have a pair (x, y) where x : A and y : B(x), the type of the

second element can depend on the first:

I we write (x, y) : ∑x:A B(x) for the type of such dependant pairs;

I it’s a generalization of the ∃∗ and the× (with the Curry–Howard
correspondance).
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Equality in HoTT

As we saw, strict equality is too restrictive for objects defined “up to
continuous deformations”. We can’t interpret x =A y as “x and y are
exactly equal.”

How shouldwe interpret x =A y then?

In HoTT, we interpret it as “there is a path from x to y in type A”:

equality  identification/identity.
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Inductive principle of identity

Axiom
To prove a propertyP on identifications between x and y, it suffices to
show that it holds for the constant path reflx.

Written differently:

Axiom
Fix a point x and letP be a property on a point y and a path p from x
to y. Then, to show thatP holds for all pairs (y, p), it suffices to show
thatP(x, reflx) holds.
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Inductive principle of identity

Missing

figure
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Usually we have this in head:

if p : x =A y then x ≡ y and p ≡ reflx.

This is an axiom called Uniqueness of Identity Proofs,UIP.

In HoTT, that’s not always true.

When such an implication in type A holds, we call A a (mere)
proposition: there is at most one proof of a proposition.
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Continuity

Lemma
If f : A → B is a function then, for any x, y : A there exists an operation

ap f : (x =A y) → ( f (x) =B f (y)),

such that ap f (reflx) = refl f (x).
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Continuity

Lemma
If f : A → B is a function then, for any x, y : A there exists an operation

ap f : (x =A y) → ( f (x) =B f (y)),

such that ap f (reflx) = refl f (x).

Proof
To define ap f (p) for all p : x = y, it suffices, by induction, to assume
that path p is reflx. In this case, we define

ap f (p) :≡ refl f (x) : f (x) =B f (x).
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Continuity

Lemma
If f : A → B is a function then, for any x, y : A there exists an operation

ap f : (x =A y) → ( f (x) =B f (y)),

such that ap f (reflx) = refl f (x).

Interpreting this lemma: if there is a path between x and y then there
is a path between f (x) and f (y). Every function inHoTT is inherently
continuous!
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Section 3

AGDA
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Section 4

The Theorem
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Some notations…

Wewrite:

Covering(A, a) := ∑
(B,b):U•

∑
p:(B,b)→(A,a)

∏
x:A

isSet(fibp(x)).
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Section 5

The Proof
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Au boulot Hugo !
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