
— INTERNSHIP REPORT —

CLASSIFYING COVERING SPACES IN

HOMOTOPY TYPE THEORY a

Hugo Salou

ENS de Lyon

Département Informatique

Internship supervisors:

Samuel Mimram et Émile Oléon

LIX, École Polytechnique

Équipe Cosynus

01/06/2025 – 25/07/2025

aOriginal title: « Preuve formelle des variétés polyédrales de Poincaré en théorie des types homotopiques »



Contents

1 Introduction. 2

2 Some elements of Algebraic Topology. 2
2.1 Paths and Loops. . . . . . . . . . . 2
2.2 Fundamental Group. . . . . . . . . 3
2.3 Homotopy equivalence. . . . . . . . 4
2.4 Covering spaces. . . . . . . . . . . 5
2.5 The Galois Correspondance. . . . . . 6

3 Homotopy Type Theory. 6

4 Cubical Agda. 6

5 Conclusion. 6

1 Introduction.
Algebraic topology is the study of topological spaces
through algebra. We may compare two spaces by
studying invariants. A simple invariant is the number
of connected components in the space.

Classifying spaces “up to equality” is very restrictive.
When we consider the usual example of the coffee
mug that can be deformed into a torus, we want to
consider that the two spaces are identical. This tells
us that we should consider spaces “up to continuous de-
formation,” we will give a more precise definition in
section 2.

The goal of this internship was to formally prove (i.e.
in a proof assistant) a classical result in algebraic
topology: there is a one to one correspondance be-
tween covering spaces and subgroups of the funda-
mental group. All of thedefinitionswill begive in sec-
tion 2. However, the main idea is: by studying sub-
groups, we get geometric insights.

To prove this result, we use Homotopy Type Theory
(HoTT). This framework links geometry and logic in
one coherent paradigm based on Type Theory (used
in most proof assistants). It allows us to very sim-
ply reason about many of the key concepts of alge-
braic topology. Instead of thinking of types as logi-
cal propositions (as it usual in TypeTheory), we think
of them as topological spaces. We will discuss more
about HoTT in section 3.

Agda is the proof assistant used during this intern-
ship. When using proof assistants like Rocq or Lean,

we expect to use tactics in order to prove a result (so,
a type, as it is usual in Type Theory). These tactics
generate a term of the corresponding type. However,
Agda doesn’t go in this direction. Instead, we write
terms directly with a Haskell-like syntax. The Cubi-
cal version of Agda allows us to use Cubical Homotopy
TypeTheory, a variant of the onepresented in theHoTT
Book [Uni13] (the main reference for Homotopy Type
Theory). A more complete presentation of Agda will
be given in section 4.

2 Some elements of Algebraic
Topology.

In this section, we will give an introduction to al-
gebraic topology. The main source for this section
is [Hat02, Chapters 1 & 2].

In this section, we will write I for [0, 1]–the unit in-
terval. Let X be a topological space, that is, some
space with a notion of openness and thus continuity.

2.1 Paths and Loops.
Let us start with a definition of paths and loops.

Definition 1. . A path from x to y (in the topologi-
cal spaceX) is a continuousmap p : I→ X such
that p(0) = x and p(1) = y.

. A loop around x is a path from x to x.

We will write p : x { y when p is a path from x to
y (in some implied spaceX). We expect to be able to
concatenate paths, and also to reverse them.

Definition 2. Let p : x{ y and q : y{ z be paths.

. The reversed or inverse of path p is the path p−1

defined by:

p−1(t) := p(1 − t).

. The concatenation of paths p and q is the path p�q
defined by :

p � q(t) :=

p(2t) if 0 ≤ t ≤ 1
2

q(2t − 1) if 1
2 ≤ t ≤ 1.

. The constant loop at point x is the loop reflx de-
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fined by:
reflx(t) := x.

We can take the reverse of any paths but we need that
the commonendpointmatcheswhenwewant to con-
catenate paths. The notation reflx may seem unusual
when talking about paths, but it’ll make more sense
after section .

We’d love to have some nice properties with the con-
catenation and inverse: for example, associativity of
concatenation, or that reflx behaves like a neutral el-
ement for concatenation. However, in general, we do
not have

(p � q) � r =7 p � (q � r).

This is a timing issue. For the first path, we spend the
first quarter travelling along p, then the next quarter
along q, and finally the rest along r. For the second
path, we spend the first half travelling along p and
then a quarter along q and finally the rest along r.

Another example is p � p−1: this path “behaves” like
the loop reflx, but it’s not equal to reflx. And for this
example, it’s more than a timing issue, we need to
smoothly deform the path p, bringing closer the end-
point y to x until we get reflx.

Strict equality is not the right way to compare paths.
The right way is equality up to smooth deformation, also
known as a homotopy.

Definition 3. A homotopy from a path p : x { y to a
path q : x{ y is a continuous map

h : I × I→ X,

such that: for all t ∈ I,

1. h(0, t) = p(t),

2. h(1, t) = q(t),

3. h(t, 0) = x,

4. h(t, 1) = y.

We say that p and q are homotopic, written p ≈p q
when there exists a homotopy from p to q.

In the definition above, the conditions are boundary
conditions: that is, the initial slice (when the first pa-
rameter is 0) is p, the final slice is q and all the slices
are paths from x to y. The relation “homotopic to” is
an equivalence relation.

Uncurrying the definition of a homotopy,we have, in

some sense, a path h : p{ q in the space of paths be-
tween x and y. To be very formal, we’d need to define
a topology on the set of paths between x and y, which
we don’t want to do. However, it is an important idea
to keep in mind.

Now that we have defined a new way of comparing
paths, we need to make sure that

1. the notions of concatenation and inverse are de-
fined up to homotopy,

2. and we get the nice properties we expect from
concatenation and inverses.

Luckily, we do.

Lemma 1. Let p, q : u { v and r, s : v { v and t :
w{ x. We have:

. if p ≈p q then p−1
≈p q−1;

. if p ≈p q and r ≈p s then p � r ≈p q � s;

. (p � r) � t ≈p p � (r � t);

. p � refly ≈p p ≈p reflx � p;

. p � p−1
≈p reflx;

. p−1 � p ≈p refly. �

With these property in mind, we can now introduce
the fundamental group.

2.2 Fundamental Group.
Definition 4. Given a topological spaceXwith x ∈ X a
point (we say that (X, x) is a pointed topological space),
its fundamental groupπ1(X, x) is the set of homotopy
classes of loops at x in spaceX.

The fundamental group really has the structure of a
group, thanks to lemma 1.

The fundamental group is one of those invariants dis-
cussed in the introduction. Let us give a simple ex-
ample of how the fundamental group can be used to
compare topological spaces.

Example 1. Consider the space R2 with the usual
topology. The group π1(R2, (1, 0)) is trivial: any loop
is homotopic to refl(1,0). You can think of scaling any
loop at (1, 0) until it vanishes into a constant loop. As
we didn’t tear the loop, our deformationwas smooth,
i.e., a homotopy.
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Example 2. Consider the subspace

V := {(x, y) ∈ R2
| x2 + y2

≥ 1}

ofR2. It corresponds toR2 without a unit open disk.
We have that π1(V, (1, 0)) is isomorphic toZ. Let us
see why in 3 steps.

1. There is a loop at point (1, 0) that goes once
“around the hole in V”: it is the loop p defined
by p(t) := (cos 2πt, sin 2πt).

2. Any two different powersb of loop p are non ho-
motopic. For example, p is not homotopic to the
constant refl(1,0) as it’d require cutting p to “go
through” the hole inV.

3. Given any loop at (1, 0), we can project it into a
loop such that every point is at distance 1 from
the origin. Then, we can smoothly deform the
loop into pn (where n is the signed number of
times you go around the hole).

This tells us that π1(V, (1, 0)) is freely generated by
the homotopy class of p and thus is isomorphic toZ.

The two spacesR2 and V are topologically different:
they have a different fundamental group. It makes
sense becauseR2 is topologically equivalent to a sin-
gle point, andV is topologically equivalent to theunit
circle S1. Only studying the number of connected
components wouldn’t have given us this geometric
insight.

Change of base point. The base point of a pointed
space (X, x) is x. What happens to the fundamental
groupwhenwe change the base point? The answer is:
not a lot, as long as the two base points have a path
between them.

Proposition 1. Let p : x{ y be a path. Then,

π1(X, x) −→ π1(X, y)
[ q ] 7−→ [ p−1 � q � p ]

is a group isomorphism, where [ q ] is the homotopy
class of a path q. �

So,whenX is non-empty and path-connected (that is,
for any two pairs of points, there is a path between
bThat is, repeated concatenation of p, or p−1 if the power is
negative, as usual whenmanipulating groups.

them), there is no need to specify a base point.

When there is no path between x and y, the funda-
mental groups could be very different. For example,
if we consider embedding R2 and V on two parallel
planes inR3 and considering the union of those two
planes, then the fundamental group in theR2-plane
is still trivial and other one is still isomorphic toZ.

Functoriality. The π1 “operation” acts on pointed
spaces, but also acts on pointed continuous maps: that
is, a base point-preserving continuous map between
pointed spaces.c We say that π1 is functorial.

Proposition 2. Let (X, x) and (Y, y) be pointed spaces.
A pointed continuous map

f : (X, x)→ (Y, y)

induces a group homomorphism

π1( f ) : π1(X, x) −→ π1(Y, y)
[ p ] 7−→ [ f ◦ p ].

Thus, a pointed homeomorphism (a bijective continu-
ous map whose inverse is also continuous) induces a
group isomorphism.

Homeomorphic spaces have the same fundamental
group. It would seem reasonable to compare topo-
logical spaces up to homeomorphism but, as with path
equality, it is too restrictive. For example,R2 and {0}
are topologically equivalent, but aren’t homeomor-
phic (simply for cardinality reasons). We need to use
homotopy equivalences.

2.3 Homotopy equivalence.
Let us first define a homotopy of maps.

Definition 5. A homotopy (ofmaps) from a continuous
map f : X → Y to a continuous map g : X → Y is a
continuous map

h : X × I→ Y,

such that: for all x ∈ X,

cMore explicitly, f : (X, x)→ (Y, y) is a pointedcontinuousmap
if f : X→ Y is continuous and if f (x) = y.
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1. h(x, 0) = f (x), 2. h(x, 1) = g(x).

When f and g aremap-homotopic (that is, there exists
a homotopy of maps between them), we write f ≈ g.
It is an equivalence relation.

We already introduced some notation for homo-
topies of paths: p ≈p q. Is it the same as p ≈ q? No,
in path homotopy, we require that the endpoints of
all slices are x and y. For example, any path p is map-
homotopic to the constant loop reflx.

Now that we have a new way of comparing func-
tions, we need to make sure that composition and
inverses (when they exist) are compatible with map-
homotopy.

Lemma 2. Given f ,u : X→ Y and g, v : Y→ Z, such
that f ≈ u and g ≈ v, we have that:

. f ◦ g ≈ u ◦ v;

. f −1
≈ u−1 if f and u are homeomorphisms.

Then we can finally define the notion of homotopy
equivalences.

Definition 6. A homotopy equivalence between X and
Y is a twomaps f : X→ Y and g : Y→ X such that:

f ◦ g ≈ idY and g ◦ f ≈ idX.

We writeX u Y whenX and Y are homotopy equiva-
lent. It is an equivalence relation.

Example 3. The spaces R2 and {0} are homotopy
equivalent. We define:

. f : R2
→ {0}, x 7→ 0;

. g : {0} → R2, 0 7→ (0, 0).

On the one hand, we easily have that f ◦ g = id{0}.
On the other hand, we need to provide a homotopy
between x ∈ R2

7→ (0, 0) ∈ R2 and idR2, so a contin-
uous map

h : R2
× I→ R2,

such that the initial slice is x 7→ (0, 0) and the final
one is x 7→ x. We can define it, for example, with

h((x, y), t) := (tx, ty).

This can be generalized toRn u {0} for any n ∈N.

Example 4. Recalling the definition of V from exam-
ple 2:

V := {(x, y) ∈ R2
| x2 + y2

≥ 1}.

Then V is homotopy equivalent to S1. Here is a ho-
motopy equivalence:

. the map f : S1
→ V is the inclusion map;

. the map g : V → S1 is ~v 7→ ~v/‖~v‖;

. we have g ◦ f = idS1 ;

. we provide h : (~v, t) 7→ (1 − t)~v + t~v/‖~v‖ a ho-
motopy between f ◦ g : ~v→ ~v/‖~v‖ and idV.

To justify the use of homotopy equivalences, we
should give some results about homotopy equiva-
lences and the fundamental group.

Proposition 3. If f : (X, x) → (Y, y) is a pointed ho-
motopy equivalence, then the induced group homo-
morphism π1( f ) : π1(X, x)→ π1(Y, y) is an isomor-
phism. �

This concludes the subsection on homotopy equiva-
lences.

2.4 Covering spaces.
We will start by defining what a covering space is and
then give some examples.

Definition 7. Let X be a topological space. A covering
space is a space X̃ with a map p : X̃ → X with the
following property: every point x̃ ∈ X̃ has an open
neighborhood U whose preimage p−1(U) is homeo-
morphic to a space of the form U × D where D is a
discrete space.d

The copies of U in the preimage p−1(U) are called
sheets of X̃ overU.

explain why we care about covering spaces.

Here are some examples of covering spaces.

Example 5. Given a topological spaceX and somedis-
crete space D, the space X̃ := X × D with the map
p : (x, d) 7→ x is called a trivial covering space ofX.

Example 6. For any n ∈ N, we can construct a cov-
ering space of S1: we choose X̃ to be S1, which we

dThismeans a set with the discrete topology: for example sets
of the form ~1,n� orZ are discrete spaces.
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think as the subset of C whose points have a magni-
tude of 1, and we choose the map

pn : S1
−→ S1

z 7−→ zn.

This corresponds to a covering of S1 with n sheets.
Figure 1 shows this covering space forn = 4 (left one).

p4 p∞

S1

S1 R

Figure 1 4-sheet cover and universal cover of S1

Figure 1 shows a smooth deformation of X̃ such that
applying p corresponds to “flattening” that space on
the unit circle S1.

Example 7. Another covering space of S1 isRwith the
map p∞ : x 7→ e2iπx. We call it the universal cover of S1

for reasons we will explain later. Figure 1 shows this
covering space (right one).

what other example? S1
∨ S1 or T2?

Wecandefinemorphismsbetween covering spaces. Thus,
for a given topological spaceX, the collection of cov-
ering spaces of X with morphisms between them
forms a category (i.e. composition of morphisms of
cover and identities behave as we expecte).

Definition 8. Given (X̃, p̃) and (X̄, p̄) two covering
spaces ofX, amorphismof covering spaces from (X̃, p̃)
to (X̄, p̄) is a continuous map f : X̃ → X̄ such that

eThat is: associativity of composition and identity as neutral
elements of composition.

the following diagram commutes:

X̃ X̄

X
p̃

f

p̄

i.e. such that p̄ ◦ f = p̃.

We cannowdefinewhat universal coveringmeans (and
fully understand example 7).

Definition 9. Acovering (X̃, p̃)ofX is said tobeuniver-
sal if for any covering (X̄, p̄) ofX there is amorphism
from (X̃, p̃) to (X̄, p̄).

We can safely say “the” universal cover as it is unique
up to isomorphism.

2.5 The Galois Correspondance.

3 Homotopy Type Theory.

4 Cubical Agda.

5 Conclusion.
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