
Compilation and Program
Analysis

Based on the lectures of
Gabriel Radanne and Ludovic Henrio

Notes written by Hugo Salou

September 8, 2025

Contents

1 Introduction. 4
1.1 The RISCV architecture. 5
1.2 Lexical Analysis. 5

– 2/5 –– 2/5 –– 2/5 –

Hugo Salou – m1 ens lyon Compilation and Program Analysis

Before we start, some administrative informations: the class is on
Monday at 10:15AM and the tutorials are on Tuesday at 10:15AM.
Tutorials will sometimes be about the notions from the day before.

– 3/5 –– 3/5 –– 3/5 –

1 Introduction.
A compiler is a program that’ll given some code, return either an error
or some other code in another language. However, compilation is not
only about code generation: a large number of compilation techniques
are not linked to assembly production. Moreover, languages can be:

. interpreted (e.g. Python sometimes);

. compiled into an intermediate language that will be interpreted
(e.g. Java);

. compiled into another high level language (e.g. OCaml can be
compiled into JavaScript);

. compiled “on the fly” (e.g. Julia or Python sometimes);

. several of the above.

A compiler will translate a program P into a program Q such that,
for all entry, the output of Q is the same as the output of P . An
interpreter is a program that, given a program P and an entry x,
computes the output of P on x. This can be seen, in a way, we swap
two quantifiers:

∀P, ∃Q, ∀x, . . .︸ ︷︷ ︸
compiler

and ∀P, ∀x, ∃s, . . .︸ ︷︷ ︸
interpreter

.

The quality of a compiler can be measured on multiple factors: its
correctness, the efficiency of the generated code, its own efficiency.
We will also touch on program analysis.

The goal of the labs will be to write a compiler for the RISCV
architecture. This part will be done in Python.

– 4/5 –– 4/5 –– 4/5 –

Hugo Salou – m1 ens lyon Compilation and Program Analysis

1.1 The RISCV architecture.
RISCV is an open-source architecture that is extensible. One of
the basic components of RISCV are registers. We can manipulate
registers with operations such as add1 or addi.2

We can also do branching in RISCV in two kinds:

. unconditional branching (jump and link) is done with jal;

. test and branch (branch if lower than) is one with blt.

The first one is used to implement functions, and the other one (and
variants) is used to implement an if.

All the details of the RISCV operations can be found at:
https://github.com/Drup/cap-lab25/blob/main/course/riscv_isa.pdf.

We have an assembly language. This will be the last part of our
compiler.

1.2 Lexical Analysis.
Lexical Analysis breaks down the code in tokens, known as lexems.
Here, we use regular expressions. In our case, the tool we will use for
our compiler is ANTLR.

1Adds the data from two registers into another register.
2Adds the data from one register with a constant, into another register

– 5/5 –– 5/5 –– 5/5 –

https://github.com/Drup/cap-lab25/blob/main/course/riscv_isa.pdf

	Introduction.
	The RISCV architecture.
	Lexical Analysis.

