
A perfectly secure symmetric
encryption scheme:
ONE-TIME PAD

This encryption scheme achieves information-theoric security.

Definition 1 (Symmetric encryption). Let K be a key space, P

be a plain-text space and let C be a ciphertext space These three
spaces are finite spaces.

A symmetric encryption scheme over (K,P, C) is a tuple of three
algorithms (KeyGen, Enc, Dec) :

. KeyGen provides a sample k of K;

. Enc : K× P → C;

. Dec : K× C→ P.

Without loss of generality, we will assume that im Enc = C. We
want to ensure Correctness: for any key k ∈ K and message
m ∈ P, we have that:

Dec(k, Enc(k, m)) = m.

The elements m and k are independent random variables and all
the elements in K and P have non-zero probability.
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Remark 1. The algorithm Enc could (and should1) be probabilistic.
However, the algorithm Dec is deterministic.

So far, we did not talk about efficiency of these algorithms.

Definition 2 (Shannon, 1949). A symmetric encryption scheme
is said to have perfect security whenever, for any m̄ and any c̄,

Pr
k,m

[m = m̄ | Enck(m) = c̄] = Pr
m

[m = m̄].

The intuition is that knowing the encrypted message tells me nothing
about the message.

Lemma 1 (Shannon). Given a symmetric encryption scheme
(KeyGen, Enc, Dec) has perfect security then |K| ≥ |P|.

Proof. Let c̄ ∈ C and define

S := {m̄ ∈ P | ∃k̄ ∈ K, m̄ = Dec(k̄, c̄)}.

Let N := |S|. We have that N ≤ |K| as Dec is deterministic.
We also have that N ≤ |P| as S⊆ P. Finally, assume N < |P|.
This means, there exists m̄ ∈ P such that m̄ 6∈ S. Then,

Pr[m = m̄ | Enck(m) = c̄] = 0,

but by assumption, Pr[m = m̄] 6= 0. So this is not a perfectly
secure scheme. We can conclude that

N = |P| ≤ |K|.

1If the algorithm is deterministic, if we see two identical ciphers we know that the
messages are identical, and this can be seen as a vulnerability of this protocol.
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Example 1 (One-Time PAD). Let K = C = P = {0, 1}`. Here
are the algorithms used:

. KeyGen samples from U({0, 1}`).

. Enc(k, m) we compute the XOR c = m ⊕ k.

. Dec(k, m) we compute the XOR m = c ⊕ k.

Theorem 1. The One-Time PAD is a perfectly-secure symmetric
encryption.

Proof. Correctness. We have that

Dec(k, Enc(k, m)) = k ⊕ k ⊕ m = m.

Security. We have, by independence of m and k we have that

Pr[m = m̄ | Enc(k, m) = c̄] = Pr[m = m̄ | k ⊕ m = c̄]
= Pr[m = m̄].

Remark 2. This example is not practical:

. keys need to be larger than the message;

. you cannot encrypt twice: for example, c1 = m1 ⊕ k and
c2 = m2 ⊕ k, then we have c1 ⊕ c2 = m1 ⊕ m2.

This last part is why that protocol is called a One-Time secure
encryption.
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