Message Authentication Codes, MACs

The goal of MACs is to provide integrity and authenticity.

Definition 1. A MAC is a triple of poly-time algorithms

such that:

- \triangleright KeyGen(1 $^{\lambda}$) takes as input the security parameter (in unary) and outputs a key $k \in \{0,1\}^s$;
- \triangleright Sign (k, μ) takes as inputs a key k, and a message $\mu \in \{0, 1\}^n$, and outputs a tag $t \in \{0, 1\}^m$;
- \triangleright Verify (k, μ, t) that takes as input a key k, a message μ and a tag t, and outputs a bit in $\{0, 1\}$.

We say that a MAC is *correct* if, for every key k output by KeyGen, for all message μ ,

$$Verifv(k, \mu, Sign(k, \mu)) = 1.$$

The security is defined with an experiment:

- \triangleright A challenger \mathscr{C} creates a key k with KeyGen().
- \triangleright An adversary \mathscr{A} gives a message μ_1 to \mathscr{C} .
- \triangleright Then \mathscr{C} sends back $t_1 := \operatorname{Sign}(k, \mu_1)$.

- \triangleright After, \mathscr{A} gives a message μ_2 to \mathscr{C} .
- \triangleright And \mathscr{C} sends back $t_2 := \operatorname{Sign}(k, \mu_2)$.
- \triangleright etc.
- \triangleright Finally, \mathscr{A} sends a pair (μ^*, t^*) to \mathscr{C} .

The goal of \mathcal{A} is to create (forge) a new valid message-tag pair. The adversary \mathcal{A} will win if $\operatorname{Verify}(k, \mu^*, t^*) = 1$ and $(\mu^*, t^*) \neq (\mu_i, t_i)$ for every i.

The MAC is secure if, for any poly-time adversary \mathcal{A} , the probability that \mathcal{A} wins is negligible. We call this sEU-CMA security (strong existential unforgeability under chosen message attacks).

We also define EU-CMA security: it is a variant where the success conditions are

Verify
$$(k, \mu^*, t^*) = 1$$
 and $\mu^* \neq \mu_i \quad \forall i$.

We have that sEU-CMA security implies EU-CMA security.

PRF-base MAC for fixed-length messages.

We can proceed like the following:

- \triangleright KeyGen(), it samples $k \leftarrow \mathcal{U}(\{0,1\}^s)$;
- \triangleright Sign (k, μ) , it returns $t \leftarrow F(k, \mu)$;
- \triangleright Verify (k, μ, t) , it tests if $t \stackrel{?}{=} F(k, \mu)$.

This way, a PRF is a MAC.

Why is it a secure MAC? Let's assume we have a sEU-CMA adversary \mathcal{A} and see if we can use it to break the PRF.

Consider the experiment Exp_0 —the genuine sEU-CMA experiment—where $\mathscr E$ samples a key $k \leftarrow \mathscr U(\{0,1\}^s)$, then $\mathscr A$ makes queries μ_i (than can depend on results of previous ones) and gets back $t_i \leftarrow F(k,\mu_i)$.

Finally \mathcal{A} sends \mathcal{C} a "forged signature" (μ^*, t^*) . The adversary will win if $F(k, \mu^*) = t^*$ and $(\mu_i, t_i) \neq (\mu^*, t^*)$.

Now, consider experiment Exp_1 , where $\mathscr C$ (lazily) gets a uniform $f: \{0,1\}^n \to \{0,1\}^m$. When answering $\mathscr A$'s queries, $\mathscr C$ will use $t_i \leftarrow f(\mu_i)$. Finally $\mathscr A$ sends $\mathscr C$ a "forged signature" (μ^\star, t^\star) . The adversary will win if $f(\mu^\star) = t^\star$ and $(\mu_i, t_i) \neq (\mu^\star, t^\star)$.

I will stop taking notes for the Cryptography and Security course, as I will no longer be following it. Some great lecture notes can be found in the AliENS GitLab (ENS students only):

```
https://gitlab.aliens-lyon.fr/di-students/cours-m1/-/
tree/2020-2021/s2/CS/2019-2020
```

Farewell everyone!