Correspondance de Curry-Howard-Lambek.

Hugo SALOU

Le format est un peu différent cette fois, mais j'espère que ça ira. À la fin de ce document, il y a des exercices qui permettent de manipuler les (co)produits catégoriques. Au prochain « cours », on verra la suite de cette correspondance avec les *exponentielles*. Plus tard encore, on verra les *pullbacks* (homotopiques), qui sont des outils importants pour la preuve de la correspondance de Galois en HoTT.

N'hésitez pas à me dire si vous préférez ce format ou non.

1 Étendre Curry-Howard.

En partie #3, on a vu une correspondance entre types et propositions, et entre preuves et termes (ou expressions, ou programmes). La correspondance de Curry-Howard-Lambek est une équivalence entre :

Logique↔Typage↔CatégoriesPropositions↔Types↔ObjetsPreuves↔Termes↔Morphismes

La première idée est très formelle. On crée une catégorie nommée **Logique** définie par

- objets: propositions logiques;
- ▶ morphismes : on a un morphisme de φ à ψ pour toute preuve (au sens d'arbre de preuve) de $\varphi \vdash \psi$;
- ▶ composition : si on a une preuve M de $\varphi \vdash \psi$ et N de $\psi \vdash \vartheta$ alors on définit leur composée par :

$$\frac{\frac{N}{\varphi, \psi \vdash \vartheta}}{\frac{\varphi \vdash \psi \Rightarrow \vartheta}{\varphi \vdash \vartheta}} \Rightarrow_{\mathsf{I}} \frac{M}{\varphi \vdash \psi} \Rightarrow_{\mathsf{E}};$$

▶ identité : on a une preuve de $\varphi \vdash \varphi$ donnée par la règle Ax.

Pour être très exact, il faudrait « simplifier » des étapes de la preuve, cela s'appelle l'élimination des coupures (vu en Projet Fonctionnel).

Modulo des équivalences simples, on a :

$$M: \varphi \to_{\mathsf{Logique}} \psi$$
 ssi M preuve de $\vdash \varphi \Rightarrow \psi$.

En général, on peut associer à une preuve de $\Gamma \vdash \varphi$ à un morphisme ($\wedge \Gamma$) $\to \varphi$ de **Logique**. Par abus de notations, je noterai $\Gamma \to \varphi$.

Dans la suite, on va montrer que notre modèle catégorique

est sympathique : on peut représenter des ∧ et des ∨ dans cette catégorie.

2 Produit catégorique.

Dans **Set**, un produit de deux ensembles *A* et *B* est l'ensemble

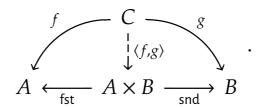
$$A \times B = \{(a, b) \mid a \in A, b \in B\}.$$

Cette construction a deux propriétés très importantes :

 \triangleright on peut extraire a et b d'un élément de $A \times B$, c'està-dire, on a des fonctions

fst :
$$A \times B \rightarrow A$$
 et snd : $A \times B \rightarrow B$;

▶ la construction est « la plus simple possible », dans le sens où, si l'on a $f: C \to A$ et $g: C \to B$, alors on a une unique fonction $\langle f, g \rangle : C \to A \times B$ telle que le diagramme commute :



Question! Pourquoi complexifier comme ça, avec des « il existe un unique [...] tel que le diagramme commute »?

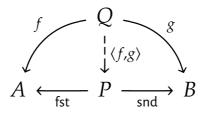
La réponse, c'est que l'on veut généraliser à d'autres caté-

gories, et que l'on ne parle pas d'éléments dans une catégorie mais de morphismes.

Définition 1. Fixons une catégorie **C**, et trois objets *A*, *B*, *P* de la catégorie **C**.

On dit que P est un produit (catégorique) de A et B si

- \triangleright il existe fst : $P \rightarrow A$ et snd : $P \rightarrow B$ dans \mathbb{C} ;
- ▶ pour tout objet Q de \mathbb{C} muni de $f:Q \to A$ et $g:Q \to B$, il existe un unique morphisme $\langle f,g \rangle:Q \to P$ tel que



commute.

Ici, on définit le produit, non pas par ces éléments, mais par ces propriétés. Il est important de préciser que : le produit de A et B n'existe pas forcément, et s'il existe, il n'est pas nécessairement unique mais...

Exercice 1. Le produit de A et B, s'il existe, est unique à isomorphisme près. On s'autorisera donc à écrire $A \times B$.

Dans la catégorie **Logique**, le produit a un sens important : c'est le « ET » logique! En effet, pour φ et ψ deux formules :

▶ on a une preuve de $\varphi \land \psi \vdash \varphi$ et de $\varphi \land \psi \vdash \psi$;

▶ c'est la « plus petite » proposition vraie ssi φ et ψ sont vraies, c'est-à-dire si $\vartheta \vdash \varphi$ et $\vartheta \vdash \psi$ alors $\vartheta \vdash \varphi \land \psi$ et cette preuve est unique.

Maintenant, dans une catégorie posétale (P, \leq) , le produit est exactement le maximum de deux éléments.

D'ailleurs, l'unicité du morphisme $\langle f,g \rangle$ est vraie, en considérant les deux objets comme des « boîtes noires ». En effet, dans des cas particuliers, on peut construire plusieurs morphismes.

Quelques exercices pour manipuler un peu plus les produits...

Exercice 2. Montrer que, si le produit $A \times (B \times C)$ existe, alors $(A \times B) \times C$ aussi, et les deux sont canoniquement isomorphes.

Exercice 3. Montrer que si $A \times C$ et $B \times D$ existent, et que l'on a $f:A \to B$ et $g:C \to D$, alors il existe un unique

$$f \times g : A \times C \rightarrow B \times D$$

tel que le diagramme suivant commute

$$A \xleftarrow{\text{fst}} A \times C \xrightarrow{\text{snd}} C$$

$$f \downarrow \qquad \qquad \downarrow f \times g \qquad \qquad \downarrow g.$$

$$B \xleftarrow{\text{fst}} B \times D \xrightarrow{\text{snd}} D$$

Montrer que, si **C** possède tous les produits de deux éléments, alors

$$-\times g: \mathbb{C} \to \mathbb{C}$$
 et $f \times -: \mathbb{C} \to \mathbb{C}$

sont des foncteurs.

Ensuite, on peut s'intéresser à des exemples dans certaines catégories.

Exercice 4 (Programmes OCaml). On définit **OCaml**, la catégorie des programmes OCaml par :

- \triangleright objets: types OCaml A, B, \ldots ;
- ightharpoonup morphismes: fonctions (pures) calculables A o B;
- composition: composition usuelle;
- identité: fonction identité.

Montrer que **OCaml** possède tout produit de deux types. Refaire, dans le cas particulier de cette catégorie, une preuve de l'exercice 2.

Exercice 5 (Monoïdes, Groupes). On considère **Group**, la catégorie des groupes, et **Monoid** la catégorie des monoïdes. Montrer que le produit de deux groupes (resp. de deux monoïdes) existe et correspond au produit catégorique dans **Group** (resp. **Monoid**).

3 Coproduit catégorique.

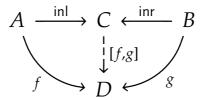
Le *coproduit* est le *dual* du produit, on l'obtient en inversant le sens des flèches dans la définition du produit.

Définition 2. Fixons une catégorie **C**, et trois objets *A*, *B*, *C*

de la catégorie C.

On dit que C est un coproduit (catégorique) de A et B si

- ▶ il existe inl : $A \rightarrow C$ et inr : $B \rightarrow C$ dans C;
- ▶ pour tout objet D de \mathbb{C} muni de $f: A \to D$ et $g: B \to D$, il existe un unique morphisme $[f,g]: C \to D$ tel que



commute.

Dans la catégorie **OCaml**, le coproduit de deux types *A* et *B* existe toujours et est donné par le type :

type
$$A + B$$
 = Left of $A \mid$ Right of B ,

avec quelques abus de notations (il s'agit du type Either.t). Le morphisme [f, g] correspond, dans **OCaml**, à :

let
$$[f,g]$$
 = function Left $a \to f(a)$ | Right $b \to g(b)$.

Parfois on l'appelle le type somme (et par extension la somme catégorique).

Sans surprise, dans le cas d'une catégorie posétale, il s'agit du minimum de deux éléments.

Exercice 6. Montrer que dans **Logique** le coproduit de deux formules existe toujours et correspond à l'opération \vee .

Comme pour le produit, on peut montrer les résultats suivants :

- \triangleright s'il existe, le coproduit est unique à isomorphisme près, on le note donc A+B;
- ▶ si A + (B + C) existe, alors (A + B) + C aussi et il sont canoniquement isomorphes;
- ▶ si C possède tous les coproduits, alors -+g et f+- sont des foncteurs $C \rightarrow C$.

Un cas plus intéressant est le cas des coproduits de groupes et de monoïdes.

Exercice 7. Pour deux groupes G et H que l'on écrit comme

$$G = \langle g_1, \ldots, g_n, \ldots \rangle$$
 et $H = \langle h_1, \ldots, h_n, \ldots \rangle$,

(finis ou infinis), en supposant que $G \cap H = \emptyset$, on définit G * H comme le groupe engendré

$$\langle g_1, h_1, g_2, h_2, \ldots, g_n, h_n, \ldots \rangle$$
.

C'est l'ensemble des mots finis sur $G \cup H$ sans relations entre éléments de G et éléments de G. On l'appelle le **produit libre** de G et G.

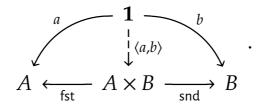
- 1. Montrer que G * H est le coproduit de G et H dans \mathbf{Group} .
- 2. Définir, de la même manière, le coproduit dans **Monoid**.

4 Retour sur la $\beta\eta$ -conversion.

Dans cette section, on se place dans la catégorie OCaml.

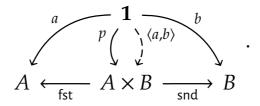
On définit **1**, un type avec un unique élément noté $\langle \rangle$ (par exemple unit avec () : unit son unique élément). Un morphisme **1** \rightarrow A correspond à un élément du type A (en effet, on identifie $\langle \rangle \mapsto a$ et a).

Considérons le diagramme suivant :



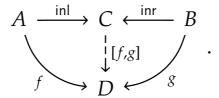
Le triangle de gauche nous dit que fst $\langle a,b\rangle=a$, et celui de droite que snd $\langle a,b\rangle=b$. Ce sont les règles de la β -réduction!

Ensuite, on peut appliquer l'unicité de $\langle a, b \rangle$:



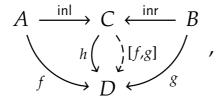
On a donc que $p = \langle a, b \rangle$ ssi fst p = a et snd p = b. C'est la règle de l' η -conversion! Cette règle nous permet d'identifier \langle fst p, snd $p\rangle$ avec p.

Pour le coproduit, on considère le diagramme



On a que [f, g](inl a) = f(a) et [f, g](inr b) = g(b), qui sont exactement les règles de la β -réduction (il faut imaginer la construction [-, -'] comme une version très simple du match, on a donc comment évaluer ce match).

En considérant le diagramme



on a que h = [f, g] ssi h(inl a) = f(a) et h(inr b) = g(b), en appliquant l'unicité de [f, g]. C'est l' η -conversion! On peut donc identifier [inl, inr] avec l'identité.

5 Récap' de Curry-Howard-Lambek.

Au prochain « cours », on verra les éléments de la table ciaprès dont je n'ai pas encore parlé.

LOGIQUE	TYPAGE	CATÉGORIES
M preuve	M terme tel	M morphisme
$de \Gamma \vdash A$	que $\Gamma \vdash M : A$	$M:\Gamma\to A$
$A \wedge B$	A*B	$A \times B$
$A \vee B$	A + B	A + B
$A \Rightarrow B$	$A \rightarrow B$	B^A
Т	1	1
Т	0	0

Table 1 | Correspondance de Curry-Howard-Lambek