VeriSLO Usage Guide

Thibaut BLANC, Amaury MAZOYER, Juliette PONSONNET, Hugo SALOU

December 22, 2025

ENS DE LYON

Contents
1. Installation

2. Annotations
2.1. ANNOtAtioNS SYNTAX . « v v v v v v v e
2.2. Placing annotationst v i e e e e e e e e e e e e e e e
2.3. SYNaCHICSUGAr « . v v v v v v v e

3. Listof unsupported features

A. Source code

Todo list

Post annotations’ placementrules L. L
Once more syntactic sugar is implemented, document it here. (For example, OCaml code inside
Hoare triples.) v v i it e e e e e e e e e e e

A W ww

1. Installation

Seehttps://gitlab.aliens-1lyon.fr/verislo/verislo/-/blob/main/README.md#installation.

2. Annotations

2.1. Annotations’ syntax

Program annotations in VeriSLO are special OCaml attributes. There are currently four types of annota-
tions:

o [@ret (var)] specifies that the return value of the code block it is attached to is named var in future

annotations.

« [@post "(condi)",...,"(condy)"] specifies the postcondition of the block it is attached to. Con-
ditions cond; must be valid Iris code (not exactly, see section 2.3). If multiple postconditions are
given, e.g. for "(condq)", "(conds)", the separating conjonction cond; * conds is taken.

« [Gpre "(condq)",...,"{condy,)"] same as post, but for preconditions.

o [@invariant "(invy)",...,"(inv,)"] same as post, but can only be applied on loops. Specifies the

invariant of the loop.

2.2. Placingannotations
There are places where annotations are forbidden. Here are the rules to follow when placing annotations:
« invariant annotations can only be placed on while and for loops.
while (cond) do (body) done [@invariant "(inv)"]

for i = (e;) to (e2) do (body) done [@invariant "(inv)"]

- pre annotations can only be place on function definitions or in matching.

fun [@pre "(cond)"] x =-> (body)

function
| ({pattern;) [@pre "(cond;)"]
| (patterny) [@pre "(cond2)"1 => (body,)

match (expr) with
| (pattern;) [@pre "(cond;)"
| (patterny) [@pre "(conda)"

i
|
\%
—~
53
g
<
N
=~

« post annotations

. ret annotations cannot be placed on expressions that do not return a value, such as if without
else, while loops, for loops, efc.

Post annota-

tions’ place-
ment rules

https://gitlab.aliens-lyon.fr/verislo/verislo/-/blob/main/README.md#installation

In addition, some annotation placements are equivalent to others:

« Expression
let [@post "(cond)"] x = (body) (in (expr))’
is equivalent to
let x = ((body) [@post "(cond)"1) (in (expr))’.
« Expression
let [Gpre "(cond;)"] [Gpost "(conds)"] (rec)’ £ x = (body) (in (expr))’
is equivalent to

let (rec)’ £ = (fun [Gpre "(cond|)"] [@post "(conds)"] x => (body)) (in (expr))’.

2.3. Syntacticsugar

Consider the following example, we have mutable state in our code and we would want to prove property
about the value of that state. We can, as a simple instance of this problem, consider the following code.

let x = ref 0 in
x := b

In Iris, in order to talk about x’s value, we need to use assertion x — v where we interpret x as a location
(this is especially true in VeriSLO). Then, we are free to prove (or use) properties about v (i.e. x’s value).
For example, an assertion proving that x’s value is odd and greater than three would look like

Jv, x—v * odd(v) * v>3. @®

(Note that we should only add one x > v assertion as we get an absurdity if we have strictly more than
one.) In a VeriSLO assertion, you can simply talk about the value !x as if it was a variable, e.g.

odd(!'x) = 'x>3

and the syntactic sugar will transform it into the expected assertion (1). For the special case that one “part”
of the annotation (cond; from section 2.1) looks like ! x = a, the Jv at the beginning becomes useless, as
we have one candidate for ! x, and we simply substitute by a everywhere: for example, we do the following
translation:

Ix=3 x odd(!x) ~ odd(3) * x+— 3,

and
lIx=3 x Ix=4 x odd('x) ~ odd(3) * 3=4 x x+—3.

3. List of unsupported features

Below is a (probably non exhaustive) list of the OCaml features not supported (yet) by VeriSLO:

Hugo

[Once more)
syntactic sugar
is imple-
mented, doc-
ument it here.
(For example,
OCaml code
inside Hoare

triples.)

- mutual recursion « classes
. reCurSiVe deﬁnition Ofvahles - records (except references)

« labelled or optional arguments . extensible constructors

« polymorphic variant . . .
polymorp . int32, int64 and native-int litterals

. arrays .
« float litterals

. downto
« char litterals
- let operators

« string litterals
. lazy

« objects « physical equality

. when clauses - shallow pattern matching
« declaration of primitive operations + exceptions

- modules (and everything related to them) . continuations

A. Source code

The source code can be found at https://gitlab.aliens-1lyon.fr/verislo/verislo/.

https://gitlab.aliens-lyon.fr/verislo/verislo/

	Installation
	Annotations
	Annotations' syntax
	Placing annotations
	Syntactic sugar

	List of unsupported features
	Source code

