
VeriSLO Usage Guide
Thibaut Blanc, Amaury Mazoyer, Juliette Ponsonnet, Hugo Salou

December 22, 2025

1



Contents
1. Installation 3

2. Annotations 3
2.1. Annotations’ syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2. Placing annotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3. Syntactic sugar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3. List of unsupported features 4

A. Source code 5

Todo list
Post annotations’ placement rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Once more syntactic sugar is implemented, document it here. (For example, OCaml code inside

Hoare triples.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2



1. Installation
Seehttps://gitlab.aliens-lyon.fr/verislo/verislo/-/blob/main/README.md#installation.

2. Annotations

2.1. Annotations’ syntax
Program annotations in VeriSLO are special OCaml attributes. There are currently four types of annota-
tions:

• [@ret ⟨var⟩] specifies that the return value of the code block it is attached to is named var in future
annotations.

• [@post "⟨cond1⟩",...,"⟨condn⟩"] specifies the postcondition of the block it is attached to. Con-
ditions condi must be valid Iris code (not exactly, see section 2.3). If multiple postconditions are
given, e.g. for "⟨cond1⟩", "⟨cond2⟩", the separating conjonction cond1 ∗ cond2 is taken.

• [@pre "⟨cond1⟩",...,"⟨condn⟩"] same as post, but for preconditions.

• [@invariant "⟨inv1⟩",...,"⟨invn⟩"] same as post, but can only be applied on loops. Specifies the
invariant of the loop.

2.2. Placing annotations
There are places where annotations are forbidden. Here are the rules to follow when placing annotations:

• invariant annotations can only be placed on while and for loops.

while ⟨cond⟩ do ⟨body⟩ done [@invariant "⟨inv⟩"]

for i = ⟨e1⟩ to ⟨e2⟩ do ⟨body⟩ done [@invariant "⟨inv⟩"]

• pre annotations can only be place on function definitions or in matching.

fun [@pre "⟨cond⟩"] x -> ⟨body⟩

function
| ⟨pattern1⟩ [@pre "⟨cond1⟩"] -> ⟨body1⟩
| ⟨pattern2⟩ [@pre "⟨cond2⟩"] -> ⟨body2⟩
...

match ⟨expr⟩ with
| ⟨pattern1⟩ [@pre "⟨cond1⟩"] -> ⟨body1⟩
| ⟨pattern2⟩ [@pre "⟨cond2⟩"] -> ⟨body2⟩
...

• post annotations Amaury
Post annota-
tions’ place-
ment rules

• ret annotations cannot be placed on expressions that do not return a value, such as if without
else, while loops, for loops, etc.

3

https://gitlab.aliens-lyon.fr/verislo/verislo/-/blob/main/README.md#installation


In addition, some annotation placements are equivalent to others:

• Expression

let [@post "⟨cond⟩"] x = ⟨body⟩ (in ⟨expr⟩)?

is equivalent to

let x = (⟨body⟩ [@post "⟨cond⟩"]) (in ⟨expr⟩)?.

• Expression

let [@pre "⟨cond1⟩"] [@post "⟨cond2⟩"] (rec)? f x = ⟨body⟩ (in ⟨expr⟩)?

is equivalent to

let (rec)? f = (fun [@pre "⟨cond1⟩"] [@post "⟨cond2⟩"] x -> ⟨body⟩) (in ⟨expr⟩)?.

2.3. Syntactic sugar
Consider the following example, we have mutable state in our code and we would want to prove property
about the value of that state. We can, as a simple instance of this problem, consider the following code.

let x = ref 0 in
x := 5

In Iris, in order to talk about x’s value, we need to use assertion x 7→ v where we interpret x as a location
(this is especially true in VeriSLO). Then, we are free to prove (or use) properties about v (i.e. x’s value).
For example, an assertion proving that x’s value is odd and greater than three would look like

∃v, x 7→ v ∗ odd(v) ∗ v ≥ 3. (1)

(Note that we should only add one x 7→ v assertion as we get an absurdity if we have strictly more than
one.) In a VeriSLO assertion, you can simply talk about the value !x as if it was a variable, e.g.

odd(!x) ∗ !x ≥ 3

and the syntactic sugarwill transform it into the expected assertion (1). For the special case that one “part”
of the annotation (condi from section 2.1) looks like !x = a, the ∃v at the beginning becomes useless, as
we have one candidate for!x, and we simply substitute bya everywhere: for example, we do the following
translation:

!x = 3 ∗ odd(!x) ⇝ odd(3) ∗ x 7→ 3,

and
!x = 3 ∗ !x = 4 ∗ odd(!x) ⇝ odd(3) ∗ 3 = 4 ∗ x 7→ 3. Hugo

Once more
syntactic sugar
is imple-
mented, doc-
ument it here.
(For example,
OCaml code
inside Hoare
triples.)

3. List of unsupported features
Below is a (probably non exhaustive) list of the OCaml features not supported (yet) by VeriSLO:

4



• mutual recursion

• recursive definition of values

• labelled or optional arguments

• polymorphic variant

• arrays

• downto

• let operators

• lazy

• objects

• when clauses

• declaration of primitive operations

• modules (and everything related to them)

• classes

• records (except references)

• extensible constructors

• int32, int64 and native-int litterals

• float litterals

• char litterals

• string litterals

• physical equality

• shallow pattern matching

• exceptions

• continuations

A. Source code
The source code can be found at https://gitlab.aliens-lyon.fr/verislo/verislo/.

5

https://gitlab.aliens-lyon.fr/verislo/verislo/

	Installation
	Annotations
	Annotations' syntax
	Placing annotations
	Syntactic sugar

	List of unsupported features
	Source code

