Propriétés « observables ».

La terminologie « propriété observable » n'est pas utilisée dans la littérature, mais c'est en réalité la compacité.

Remarque 1 (Rappel). Si $f: X \to Y$ alors

$$f_! \dashv f^{\bullet} : \wp(X) \to \wp(Y),$$

où $f_!$ est l'image directe, et f^{\bullet} est l'image réciproque.

Ainsi, $f^{\bullet}: \wp(Y) \to \wp(X)$ préserve les intersections (*i.e.* si $\mathcal{S} \subseteq \wp(Y)$ alors on a que $f^{\bullet}(\cap \mathcal{S}) = \bigcap_{S \in \mathcal{S}} f^{\bullet}(S)$).

De plus, f^{\bullet} préserve les unions car $f^{\bullet} \dashv f_{\bullet} : \wp(Y) \to \wp(X)$ où

$$f_{\bullet}: \wp(X) \longrightarrow \wp(Y)$$

 $A \longmapsto \bigcup \{B \subseteq Y \mid f^{\bullet}(B) \subseteq A\}.$

Définition 1. Soient $(X, \Omega X)$ et $(Y, \Omega Y)$ deux espaces topologiques. Une fonction $f: X \to Y$ est continue si $f^{\bullet}: \wp(Y) \to \wp(X)$ se restreint en une fonction $f^{\bullet}: \Omega Y \to \Omega X$, autrement dit

$$\forall V \in \Omega Y, \qquad f^{\bullet}(V) = \{x \in X \mid f(x) \in V\} \in \Omega(X).$$

On définie ainsi une catégorie d'espaces topologiques.

Un homéomorphisme $f:X\to Y$ est une bijection continue telle que

$$f^{-1}:Y\to X$$

est continue.¹

Lemme 1. Une fonction $f: \Sigma^{\omega} \to \Gamma^{\omega}$ est continue si et seulement si

$$\forall \alpha \in \Sigma^{\omega}, \forall n \in \mathbb{N}, \exists k \in \mathbb{N}, \forall \beta \in \Sigma^{\omega},$$
$$\beta(0) \dots \beta(k) = \alpha(0) \dots \alpha(k)$$
$$\downarrow \qquad \qquad \qquad \downarrow$$
$$f(\beta)(0) \dots f(\beta)(n) = f(\alpha)(0) \dots f(\alpha)(n).$$

Autrement dit, f est continue ssi on peut déterminer une partie finie de sa sortie à partir d'une partie finie de son entrée.

Soit $P \subseteq \Sigma^{\omega}$, et on définit la fonction caractéristique de P:

$$\chi_P : \Sigma^\omega \longrightarrow \mathbf{2} = \{0, 1\}$$

$$\alpha \longmapsto \begin{cases} 1 & \text{si } \alpha \in P \\ 0 & \text{si } \alpha \notin P \end{cases}.$$

Avec $\Omega \mathbf{2} = \wp(\mathbf{2}) = \{\emptyset, \{0\}, \{1\}, \{0, 1\}\}\)$ (ce qui est cohérent avec l'idée que $\mathbf{2}$ représente les booléens), on a que χ_P est continue ssi

- $\triangleright \chi_P^{\bullet} \{0\} = \Sigma^{\omega} \setminus P \text{ est un ouvert };$
- $\triangleright \chi_P^{\bullet}\{1\} = P \text{ est un ouvert.}$

On arrive donc à la notion de clopen.

Définition 2. Soit $(X, \Omega X)$ un espace topologique. Une partie $P \subseteq X$ est clopen (ouvert fermé en français) si P et $X \setminus P$ sont ouverts.

¹Ce n'est pas évident : par exemple, il y a une bijection [0,1] → \mathbb{S}^1 (où \mathbb{S}^1 est le cercle unité de \mathbb{R}^2) continue mais la réciproque ne l'est pas.

Remarque 2. 1. On a \emptyset est clopen, et que, si A et B sont clopen alors $A \cup B$ est clopen.

- 2. On a X est clopen, et que, si A et B sont clopen alors $A \cap B$ est clopen (dual du point précédent).
- 3. Si A est clopen alors $X \setminus A$ est clopen.

Exemple 1. Soit $u \in \Sigma^*$, on a que $\mathsf{ext}(u)$ est ouvert. Mais, on a aussi que $\Sigma^{\omega} \setminus \mathsf{ext}(u)$ est ouvert :

$$\Sigma^{\omega} \setminus \operatorname{ext}(u) = \bigcup \{\operatorname{ext}(v) \mid v \neq u \text{ et } \operatorname{length}(v) = \operatorname{length}(u)\}.$$

Remarque 3. Sur $(\Sigma^{\omega}, \Omega\Sigma^{\omega})$, tous les $\mathsf{ext}(W)$ où $W \subseteq \Sigma^{\star}$ est **fini** sont clopen. La réciproque est fausse, comme le montre le lemme suivant.

Lemme 2. Si Σ est infini et $a \in \Sigma$, alors

$$\Sigma^\omega \setminus \operatorname{ext}(a) = \bigcup_{\Sigma \ni b \neq a} \operatorname{ext}(b)$$

est clopen mais pas de la forme ext(W) avec W fini.

1 Compacité.

Définition 3. Soit $(X, \Omega X)$ un espace topologique.

- 1. Une partie $A \subseteq X$ est *compacte* si, pour toute famille $(V_i)_{i \in I} \in \Omega X^I$ telle que $A \subseteq \bigcup_{i \in I} V_i$, il existe $J \subseteq I$ **fi**-**ni** tel que $A \subseteq \bigcup_{j \in J} V_j$.
- 2. On dit que $(X, \Omega X)$ est compact si X est une partie compacte.

Remarque 4 (Non-exemple). Si Σ est infini alors Σ^{ω} n'est pas compact :

$$\Sigma^{\omega} = \bigcup_{a \in \Sigma} \operatorname{ext}(a).$$

Proposition 1. Si Σ est **fini** alors Σ^{ω} est compact.

Preuve. On procède à l'aide du lemme de Kőnig. Supposons que $\Sigma^{\omega} = \bigcup_{i \in I} U_i$ où $U_i \in \Omega \Sigma^{\omega}$. On a que $U_i = \mathsf{ext}(V_i)$ pour un $V_i \subseteq \Sigma^{\star}$ (en général, V_i est infini). Soit $V = \bigcup_{i \in I} V_i \subseteq \Sigma^{\star}$, et on vérifie que $\mathsf{ext}(V) = \Sigma^{\omega}$. Pour chaque $n \in \mathbb{N}$, on définit $W_n \subseteq \Sigma^n$ par récurrence :

- \triangleright On pose $W_0 := \{\varepsilon\}$ si $\varepsilon \in V$ et $W_0 := \emptyset$ sinon.
- ▶ On pose

 $W_{n+1} := \{ u \in V \mid u \text{ n'a pas de préfixe dans } \bigcup_{k \le n} W_k \}.$

On pose enfin $W = \bigcup_{n \in \mathbb{N}} W_n$. On a que $\operatorname{ext}(W) = \operatorname{ext}(V)$ (car, pour tout $v \in V$, il existe $w \in W$ tel que $w \subseteq v$), et W est « prefix-free » (c'est-à-dire que, pour $w, w' \in W$, on a $w \not\subseteq w'$ ssi $w \neq w'$).

Si W est fini alors on s'arrête.

Par l'absurde, supposons W infini, et posons $T=\operatorname{Pref}(W)$ qui est un arbre par définition. L'arbre T est à branchement fini (car Σ est fini), et T est infini (car W l'est) Par le lemme de Kőnig, il existe un chemin infini $\pi \in \Sigma^{\omega}$ dans T. Comme $\Sigma^{\omega}=\operatorname{ext}(W)$, il existe $u \in W$ tel que $u \subseteq \pi$. De plus, il existe $a \in \Sigma$ tel que $u \subseteq \pi$ et donc $ua \in T=\operatorname{Pref}(W)$.

On arrive à une contradiction car $u \in W$ et W est prefix-free. \square

Corollaire 1. On a que Σ^{ω} est compact ssi Σ fini.

Lemme 3. Si $(X, \Sigma X)$ est compact et $C \subseteq X$ est fermé alors C est compact.

Preuve. L'idée est que si $C \subseteq \bigcup_{i \in I} V_i$ alors $X \subseteq (X \setminus C) \cup \bigcup_{i \in I} V_i$.

Corollaire 2. Si Σ est fini alors $A \subseteq \Sigma^{\omega}$ est clopen ss'il existe $W \subseteq \Sigma^{\star}$ **fini** tel que $A = \mathsf{ext}(W)$.

2 Espace Hausdorff.

Définition 4. On dit que $(X, \Omega X)$ est *Hausdorff* (ou T_2) lorsque, pour tout $x \neq y \in X$, alors il existe $U, V \in \Omega X$ tels que

$$U \cap V = \emptyset$$
 $x \in U$ et $y \in V$.

Exemple 2. L'espace $(\Sigma^{\omega}, \Omega\Sigma^{\omega})$ est Hausdorff. Soient $\alpha \neq \beta$. Il existe $u \subseteq \alpha$ et $v \subseteq \beta$ tels que $\mathsf{ext}(u) \cap \mathsf{ext}(v)$.

(On peut choisir $u = p\alpha(\mathsf{length}(p))$ et $v = p\beta(\mathsf{length}(p))$ où p est le plus long préfixe commun à α et β .)

Proposition 2. Si (X,Ω) est compact Hausdorff et $C\subseteq X$ est compact alors C est fermé.

Preuve. Soit $C \subseteq X$ est compact et $x \notin C$. Pour tout $y \in C$, il existe U_y, V_y tels que $U_y \cap V_y = \emptyset$ et $x \in U_y$ et $y \in V_y$. Donc, on a $C \subseteq \bigcup_{y \in C} V_y$. Comme C est compact, il existe $y_1, \ldots, y_n \in C$ tels que $C \subseteq V_{y_1} \cup V_{y_2} \cup \cdots \cup V_{y_n}$. On a que $x \in U_{y_1} \cup \cdots \cup U_{y_n} =: U \in \Omega X$. Et, $U \subseteq X \setminus C$ car, $U \cap (V_{y_1} \cup \cdots \cup V_{y_n}) = \emptyset$.

Corollaire 3. Si $(X, \Omega X)$ est compact Hausdorff et $C \subseteq X$,

C compact $\iff C$ fermé.

Semantics and Verifications