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1 Toward Stone Duality.
Question 1. Show that every Stone space (𝑋,Ω) is Hausdorff (if 𝑥,𝑦 ∈ 𝑋 are distinct,
there there are disjoint𝑈,𝑉 ∈Ω such that𝑥 ∈𝑈 and𝑦 ∈𝑉).

Let𝑥,𝑦 ∈ 𝑋be twodistinct points of aStone space (𝑋,Ω). As, (𝑋,Ω) isT0 and
without loss of generality, there exists𝑊∈Ω such that 𝑥 ∈𝑊 and 𝑦 ∉𝑊. As
(𝑋,Ω) is zero-dimensional, we can write𝑊≕ ⋃𝑖∈𝐼𝑊𝑖 where𝑊𝑖 ∈ KΩ for
every 𝑖 ∈ 𝐼. Thus, there exists a clopen set𝑈 ≔𝑊𝑖 ∈Ω such that 𝑥 ∈𝑊𝑖 ⊆𝑈.
Define 𝑉≔ 𝑋 ∖𝑈 ∈ Ω, and we have that 𝑥 ∈ 𝑈, 𝑦 ∈ 𝑉 (as 𝑦 ∉ 𝑊 ⊇ 𝑈) and
the open sets𝑈 and 𝑉 are disjoint. We can conclude that every Stone space
is Hausdorff.

Question 2. Show that≤ is a partial order on𝔏(LML).

We start by showing the following lemma.

Lemma 1. We have 𝜙 ≤𝜓 if and only if J𝜙K⊆ J𝜓K.
Proof.We have that 𝜙 ≤ 𝜓 iff 𝜙 ≡ 𝜙∧𝜓 iff J𝜙K = J𝜙∧𝜓K = J𝜙K∩ J𝜓K (that
last equality is by definition of J−K) iff J𝜙K⊆ J𝜓K.

We can thus easily show that≤ is a partial order.

▷ Reflexivity. As J𝜙K⊆ J𝜙K, we have that 𝜙 ≤𝜙 for every 𝜙 ∈ 𝔏(LML).

▷ Transitivity. For any 𝜙,𝜓,𝜗 ∈ 𝔏(LML), if 𝜙 ≤𝜓 and𝜓 ≤ 𝜗 then, by the
lemma, J𝜙K⊆ J𝜓K⊆ J𝜗K, thus we have J𝜙K⊆ J𝜗K, i.e. 𝜙 ≤ 𝜗.

▷ Antisymmetry. For any 𝜙,𝜓 ∈ 𝔏(LML), if 𝜙 ≤ 𝜓 and 𝜓 ≤ 𝜙 then, by
double inclusion with the above lemma, J𝜙K = J𝜓K thus 𝜙 = 𝜓 as we
consider LML-formulae quotiented by≡.
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2 Lattices and Boolean Algebras.
2.1 Semilattices.
Question 3. Let (𝐿,≤) be a partial order.

1. Show that(𝐿,≤) is a meet semilattice if, and only if,𝐿has binary meets∧ ∶ 𝐿 ×𝐿→
𝐿 and greatest element⊤ ∈ 𝐿.

2. Show that(𝐿,≤) is a join semilattice if, and only if,𝐿has binary joins∨ ∶ 𝐿 ×𝐿→
𝐿 and least element⊥ ∈ 𝐿.

1. If (𝐿,≤) is a meet semilattice, then 𝐿 has binary meets and a greatest
element⊤=⋀∅ (any element is a lower bound of∅, thus the greatest
lower bound of∅ is the greatest element).

Now, suppose (𝐿,≤) has a binary meet ∧ and a greatest element ⊤.
Consider {𝑎𝑖 ∣ 𝑖 ∈ 𝐼} a finite subset of elements of 𝐿. By induction
on #𝐼 ∈ ℕ, we define ⋀𝑖∈𝐼𝑎𝑖 ∈ 𝐼 and show that ⋀𝑖∈𝐼𝑎𝑖 is a meet of the
finite set {𝑎𝑖 ∣ 𝑖 ∈ 𝐼} (like the notation suggests).

▷ Define⋀𝑖∈∅𝑎𝑖 ≔⊤∈ 𝐿; as any element is a lower bound of∅, the
greatest lower bound of∅ is the greatest element.

▷ Consider 𝐼 ≔ 𝐽⊔{𝑖}. By inductionhypothesis,wehave that⋀𝑗∈𝐽𝑎𝑗
exists in 𝐿 and is a meet of {𝑎𝑗 ∣ 𝑗 ∈ 𝐽} in (𝐿,≤). Define

⋀
𝑘∈𝐼

𝑎𝑘 ≔ (⋀
𝑗∈𝐽
𝑎𝑗)∧𝑎𝑖 ∈ 𝐼.

We have that ⋀𝑘∈𝐼𝑎𝑘 is a lower bound of {𝑎𝑘 ∣ 𝑘 ∈ 𝐼}. Consider
an element 𝑎𝑘 with 𝑘 ∈ 𝐼. If 𝑘 ∈ 𝐽 then 𝑎𝑘 ≤ ⋀𝑗∈𝐽𝑎𝑗 ≤ ⋀𝑘′∈𝐼𝑎𝑘′ .
Otherwise 𝑘 = 𝑖 and we immediacy have that 𝑎𝑖 ≤⋀𝑘′∈𝐼𝑎𝑘′ .

Consider a lower bound 𝑏 ∈ 𝐿 of {𝑎𝑘 ∣ 𝑘 ∈ 𝐼}, then 𝑏 is a lower
bound of {𝑎𝑗 ∣ 𝑗 ∈ 𝐽} and 𝑏 ≤ 𝑎𝑖. We have 𝑏 ≤ ⋀𝑗∈𝐽𝑎𝑗 and 𝑏 ≤ 𝑎𝑖,
therefore 𝑏 ≤⋀𝑘∈𝐼𝑎𝑘.

We can conclude that⋀𝑘∈𝐼𝑎𝑘 is a meet of {𝑎𝑘 ∣ 𝑘 ∈ 𝐾}.

Finally, we have that (𝐿,≤) has finite meets.
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2. This results follows from 1 when considering the partial order (𝐿,≥),
by duality. Meets in (𝐿,≥) are exactly joins in (𝐿,≤), and the greatest
element of (𝐿,≥) is the least element of (𝐿,≤), and vice versa.

Note. In the following,when I will be dealing withmultiple partial orders
on the same set (e.g. ≤ and ≥), I will write ⋀≤ for the meet operator in
poset (𝐼 ,≤), ⋁≤ for the join operator in poset (𝐼 ,≤), ⊤≤ for the greatest
element in poset (𝐼 ,≤) and⊥≤ for the least element in poset (𝐼 ,≤).

Question 4. Prove the following.

1. Let (𝐿,≤) be a meet semilattice with binary meets∧ ∶ 𝐿 ×𝐿 → 𝐿 and greatest
element⊤ ∈ 𝐿. Then (𝐿,∧,⊤) is a commutative mooned in which every element
is idempotent. Moreover, we have𝑎 ≤ 𝑏 iff𝑎 = 𝑎∧𝑏.

2. Let (𝐿,≤) be a join semilattice with binary joins ∨ ∶ 𝐿 × 𝐿 → 𝐿 and least ele-
ment⊥. Then(𝐿,∨,⊥) is a commutative mooned in which every element is idem-
potent. Moreover, we have𝑎 ≤ 𝑏 iff𝑏 = 𝑎∧𝑏.

1. Let 𝑎,𝑏,𝑐 ∈ 𝐿. First, we have that 𝑎 ∧𝑏 = ⋀{𝑎,𝑏} = ⋀{𝑏,𝑎} = 𝑏 ∧𝑎
thus the binary meet operation ∧ is commutative. Then, as a special
case of the previous question, we have that 𝑎 and⊤∧𝑎 are bothmeets
of {𝑎}. And, by unicity of meets (i.e. antisymmetry of ≤, mainly), they
are equals. Also as a special case of the previous question,we have that
elements

𝑎∧(𝑏∧𝑐) =⊤∧(𝑎∧(𝑏∧𝑐))

and
(𝑎 ∧𝑏)∧𝑐 = 𝑐∧(𝑎∧𝑏) =⊤∧(𝑐∧(𝑎∧𝑏))

are both meets of the set {𝑎,𝑏,𝑐}, thus are equal. Next, we have that

𝑎∧𝑎 =⋀{𝑎,𝑎} =⋀{𝑎} =⊤∧𝑎 = 𝑎

(penultimate equality is from last question), thus𝑎∧𝑎 = 𝑎. Finally,we
have that:

▷ if 𝑎 = 𝑎∧𝑏 then 𝑎 is a lower bound of {𝑎,𝑏} thus 𝑎 ≤ 𝑏;
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▷ if 𝑎 ≤ 𝑏 then 𝑎 = 𝑎 ∧𝑏 as 𝑎 is a lower bound of {𝑎,𝑏} and any
lower bound 𝑐 of {𝑎,𝑏}must satisfy 𝑐 ≤ 𝑎.

2. Consider themeet semilattice (𝐿,≥)andapply the results above. Meets
in (𝐿,≥) are exactly joins in (𝐿,≤), and the greatest element of (𝐿,≥)
is the least element of (𝐿,≤), and vice versa. The last statement follows
from the equivalence:

𝑎 ≤ 𝑏 iff 𝑏 ≥ 𝑎 iff 𝑏 = 𝑎∧≥ 𝑏 iff 𝑏 = 𝑎∨≤ 𝑏,

where the second “iff” follows from the result above for (𝐿,≥), and the
last one follows from the equality 𝑎∧≥ 𝑏 = 𝑎∨≤ 𝑏.

Question 5. Prove the following.

1. Given a commutative monoid (𝐿,∧,⊤) in which every element is idempotent, let
𝑎 ≤∧ 𝑏 iff𝑎 = 𝑎∧𝑏. Then(𝐿,≤∧) is a meet semilattice with binary meets given
by∧ and greatest element⊤.

2. Given a commutative monoid (𝐿,∨,⊥) in which every element is idempotent, let
𝑎 ≤∨ 𝑏 iff𝑏 = 𝑎 ∨𝑏. Then (𝐿,≤∨) is a join semilattice with binary joins given
by∨ and least element⊥.

1. Let us start by showing that (𝐿,≤∧) is a partial order.

▷ Reflexivity. As 𝑎∧𝑎 = 𝑎 by idempotence, we have 𝑎 ≤∧ 𝑎.

▷ Antisymmetry. If 𝑎 ≤∧ 𝑏 and 𝑏 ≤∧ 𝑎 then, by commutativity, we
have 𝑎∧𝑏 = 𝑎 = 𝑏.

▷ Transitivity. If 𝑎 ≤∧ 𝑏 and 𝑏 ≤∧ 𝑐 then, by associativity,

𝑎 = 𝑎∧𝑏 = 𝑎∧(𝑏∧𝑐) = (𝑎∧𝑏)∧𝑐 = 𝑎∧𝑐,

thus 𝑎 ≤∧ 𝑐.

By question 3, it suffices to show that (𝐿,≤∧) that binary meets for
poset (𝐿,≤∧) are∧ and that⊤ is the greatest element of poset (𝐿,≤∧).
Consider 𝑎,𝑏,𝑐 three arbitrary elements of 𝐿.

▷ For any 𝑏 ∈ 𝐿, we have 𝑏 ∧⊤ = 𝑏 (as ⊤ is a neutral element) and
thus 𝑏 ≤∧ ⊤ for all 𝑏 ∈ 𝐿, so⊤ is the greatest element of (𝐿,≤∧).
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▷ Firstly, element 𝑎∧𝑏 is a lower bound of {𝑎,𝑏} as

𝑎∧𝑏 ≤∧ 𝑎 iff 𝑎∧𝑏 = (𝑎∧𝑏)∧𝑎
𝑎∧𝑏 ≤∧ 𝑏 iff 𝑎∧𝑏 = (𝑎∧𝑏)∧𝑏

and the latter equalities are true by idempotence, associativity,
and finally commutativity. Secondly, consider 𝑐 ∈ 𝐿 such that we
have 𝑐 ≤∧ 𝑎 and 𝑐 ≤∧ 𝑏, then 𝑐∧𝑎 = 𝑐 = 𝑐∧𝑏. We therefore have
that 𝑐 ≤∧ 𝑎∧𝑏, as

𝑐∧(𝑎∧𝑏) = (𝑐∧𝑎)∧𝑏 = 𝑐∧𝑏 = 𝑐.

We can conclude that∧ is the binary meet operator in (𝐿,≤∧).

2. Applying the previous result with the commutative monoid (𝐿,∨,⊥),
we obtain that (𝐿,≥∨)a is a meet semilattice where binary meets for
≥∨ are given by ∨ and the greatest element for ≥∨ is ⊥. We can thus
conclude that (𝐿,≤∨) is a join semilatticewhere binary joins for≤∨ are
given by∨ and the least element for≤∨ is⊥.

Question 6. Show the following, for the partial order (𝔏(LML),≤):

1. (𝔏(LML),≤) is a meet semilattice with greatest element⊤and binary joins given
by

−∧− ∶ 𝔏(LML)×𝔏(LML)⟶𝔏(LML)
(𝜙,𝜓)⟼𝜙∧𝜓 ;

2. (𝔏(LML),≤) is a join semilattice with least element⊥ and binary joins given by

−∨− ∶ 𝔏(LML)×𝔏(LML)⟶𝔏(LML)
(𝜙,𝜓)⟼𝜙∨𝜓.

Wewill use the lemma proven in question 2 (lemma 1, page 1).

aThe notation is, in a way, “context-sensitive,” as for an arbitrary monoid (𝑀,~, I), we can
either define 𝑎 ≤~ 𝑏 as 𝑎~𝑏 = 𝑎 or 𝑎 ≤~ 𝑏 as 𝑎~𝑏 = 𝑏.
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1. We only need to show that−∧− defines a binarymeet for (𝔏(LML),≤)
and that⊤ is a greatest element.

For any 𝜙 ∈ 𝔏(LML), we have 𝜙 ≤ ⊤ as J𝜙K ⊆ J⊤K = (2AP)𝜔, thus ⊤ is
the greatest element.

For any formulae𝜙,𝜓 ∈ 𝔏(LML),we have that𝜙∧𝜓 ≤𝜙 and𝜙∧𝜓 ≤𝜓
as both J𝜙K and J𝜓K are supersets of J𝜙∧𝜓K= J𝜙K∩J𝜓K (by definition
of interpretation J−K). Then, if 𝜗 ≤ 𝜙 and 𝜗 ≤ 𝜓, we have that J𝜗K ⊆
J𝜙K and J𝜗K ⊆ J𝜓K thus J𝜗K ⊆ J𝜙K∩ J𝜓K = J𝜙 ∧𝜓K, therefore 𝜗 ≤
𝜙∧𝜓.

We can conclude that (𝔏(LML),≤) is a meet semilattice with greatest
element⊤ and binary meets given by−∧−.

2. We only need to show that −∨− defines a binary join for (𝔏(LML),≤)
and that⊥ is a least element.

For any 𝜙 ∈ 𝔏(LML), we have ⊥ ≤ 𝜙 as ∅ ⊆ J⊥K ⊆ J𝜙K, thus ⊥ is the
least element.

For any formulae𝜙,𝜓 ∈ 𝔏(LML),we have that𝜙 ≤𝜙∨𝜓 and𝜓 ≤𝜙∨𝜓
as both J𝜙K and J𝜓K are subsets of J𝜙∨𝜓K= J𝜙K∪J𝜓K (by definitionof
interpretation J−K). Then, if 𝜙 ≤ 𝜗 and𝜓 ≤ 𝜗, we have that J𝜙K⊆ J𝜗K
and J𝜓K⊆ J𝜗K thus J𝜙∨𝜓K= J𝜙K∪ J𝜓K⊆ J𝜗K, therefore 𝜙∨𝜓 ≤ 𝜗.

We can conclude that (𝔏(LML),≤) is a join semilattice with least ele-
ment⊥ and binary joins given by−∨−.

Question 7. Show that a map of meet (resp. join) semilattices is monotone.

Let 𝑓 ∶ 𝐿 → 𝐿′ be an arbitrary function where (𝐿,≤) and (𝐿′,≤′) are partial
orders.

1. Suppose 𝑓 ∶ (𝐿,≤) → (𝐿′,≤′) is a map of meet semilattices. Let 𝑎,𝑏 ∈
𝐿. If 𝑎 ≤ 𝑏, then 𝑎∧𝑏 = 𝑎 and, as 𝑓 preserves finite meets,

𝑓(𝑎)∧′ 𝑓(𝑏) = 𝑓(𝑎 ∧𝑏) = 𝑓(𝑎),

and thus 𝑓(𝑎) ≤′ 𝑓(𝑏). Therefore, 𝑓 is monotone.
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2. Suppose 𝑓 ∶ (𝐿,≤)→ (𝐿′,≤′) is amap of join semilattices. Let𝑎,𝑏 ∈ 𝐿.
If 𝑎 ≤ 𝑏, then 𝑎∨𝑏 = 𝑏 and, as 𝑓 preserves finite joins,

𝑓(𝑎)∨′ 𝑓(𝑏) = 𝑓(𝑎 ∨𝑏) = 𝑓(𝑏),

and thus 𝑓(𝑎) ≤′ 𝑓(𝑏). Therefore, 𝑓 is monotone.

2.2 Lattices.
Question 8. Consider the partial order (𝐿,⊑)where

𝐿 ≔ℕ∪{𝛼,𝛽,⊤},

where⊑ is the reflexive-transitive closure of⊏, where

𝑎 ⊏ 𝑏 iff

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪
⎩

𝑎 < 𝑏 inℕ
or

𝑎 ∈ ℕ and𝑏 ∈ {𝛼,𝛽}
or

𝑎 ∈ {𝛼,𝛽} and𝑏 =⊤.

Show that (𝐿,⊑) is a join semilattice but is not a lattice.

0 1 2 3 …

𝛼

𝛽

⊤⊏ ⊏ ⊏ ⊏
⊏

⊏

⊏
⊏

Figure 1 Hasse diagram of (𝐿,⊑) from question 8
Note: Hasse diagrams are usually read bottom-to-top,

but this one is drawn left-to-right for convenience.

The relation⊑ is a partial order. Reflexivity and transitivity is true by defini-
tion of ⊑ as the reflexive and transitive closure of ⊑. For antisymmetry, we
have that:

▷ for 𝑛,𝑚 ∈ℕ,𝑛 ⊑𝑚 iff 𝑛 ≤𝑚;
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▷ for any 𝑛 ∈ℕ and𝑚∈𝐿∖ℕ, we have 𝑛 ⊑𝑚 and𝑚⋢𝑛;

▷ 𝛼 ⊑⊤,𝛽 ⊑⊤,⊤⋢𝛼,⊤⋢𝛽,𝛼 ⋢𝛽 and 𝛽 ⋢𝛼;

(this can be shown by induction on the relation⊑).

We have that 0 is the least element in (𝐿,⊑): we have that 0 ⊑ 𝑎 for all 𝑎 ∈ 𝐿.
For 𝑎,𝑏 ∈ 𝐿, we can define 𝑎∨𝑏 as:

▷ if 𝑎,𝑏 ∈ ℕ, let 𝑎∨𝑏 ≔min≤ℕ(𝑎,𝑏);

▷ if 𝑎 ∈ ℕ and 𝑏 ∈ 𝐿 ∖ℕ, let 𝑎∨𝑏,𝑏 ∨𝑎 ≔𝑏;

▷ otherwise let𝛼∨𝛽≔⊤,𝑎∧𝑎 ≔𝑎,𝑎∧⊤,⊤∧𝑎 ≔⊤ for𝑎 ∈ {𝛼,𝛽,⊤}.

Using the previous results on⊑, we have that−∨− really is a join.

This concludes the proof that (𝐿,⊑) is a join semilattice.

We also have that (𝐿,⊑) is not a lattice. Suppose it is a lattice, and consider
the element 𝑎 ≔ 𝛼∧𝛽. Necessarily, we have that 𝑎 ∈ ℕ (if 𝑎 = 𝛼 then we
would have 𝛼 ⊑ 𝛽, which is false). As 𝑎 = 𝛼∧𝛽 and 𝑎+1 ⊑ 𝛼,𝛽we have, by
definition of meet, that 𝑎+1 ⊑ 𝑎, thus 𝑎+1 ≤ 𝑎 (since 𝑎,𝑎+1 ∈ ℕ) which is
absurd. We can conclude that (𝐿,⊑) is not a lattice.

Question 9. Consider a set 𝐿 equipped with two binary operations ∧,∨ ∶ 𝐿 × 𝐿 → 𝐿
and two constants ⊤,⊥ ∈ 𝐿. Assume that (𝐿,∧,⊤) and (𝐿,∨,⊥) are commutative
monoids in which every element is idempotent. Show that the following are equivalent.

1. The partial order≤∨ induced by (𝐿,∨,⊥) coincides with the partial order≤∧ in-
duces by (𝐿,∧,⊤).

2. (𝐿,∨,∧,⊥,⊤) satisfies the two following absorptive laws:

∀𝑎,𝑏 ∈ 𝐿, 𝑎 ∨(𝑎∧𝑏) = 𝑎 (abs₁)
∀𝑎,𝑏 ∈ 𝐿, 𝑎 ∧(𝑎∨𝑏) = 𝑎 (abs₂)

▷ Let us show that 1 implies 2. Let 𝑎,𝑏 ∈ 𝐿. We have that 𝑎∧𝑏 ≤∧ 𝑎 and,
assuming ≤∧ and ≤∨ coincide, 𝑎 ∧𝑏 ≤∨ 𝑎, thus 𝑎 ∨ (𝑎 ∧𝑏) = 𝑎, i.e.
(abs₂) holds. Similarly, 𝑎 ≤∨ 𝑎∨𝑏 thus 𝑎 ≤∧ 𝑎∨𝑏, so (𝑎 ∧𝑏)∨𝑎 = 𝑎
holds, and we can recover (abs₁) by using commutativity.

▷ Let us show that 2 implies 1.
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– Suppose 𝑏 ≤∧ 𝑎, then 𝑏∧𝑎 = 𝑏. By (abs₁) and commutativity, we
have 𝑏∨𝑎 = (𝑏∧𝑎)∨𝑎 = 𝑎, thus 𝑏 ≤∨ 𝑎.

– Suppose 𝑏 ≤∨ 𝑎, then 𝑏∨𝑎 = 𝑎. By (abs₂), we have

𝑏∧𝑎 = 𝑏∧(𝑏∨𝑎) = 𝑏,

thus 𝑏 ≤∧ 𝑎.

Thus the two order coincide.

Question 10. Show that the partial order (𝔏(LML),≤) is a lattice.

Wehave shown that (𝔏(LML),≤) has a greatest element⊤, a least element⊥,
binarymeets given by−∧− and binary joins given by−∨− (question 6). Thus
it has all finite meets and finite joins (as seen in question 3), i.e. (𝔏(LML),≤)
is a lattice.

Question 11. Show that the function

○ ∶ 𝔏(LML)⟶𝔏(LML)
𝜙⟼○𝜙

is a morphism of lattices.

We know○ is amap ofmeet iff○⊤=⊤ and○(𝜙∧𝜓) =○𝜙∧○𝜓. Both are
true as,

J○⊤K= {𝜎 ∈ (2AP)𝜔 | 𝜎 ↾ 1 ∈ J⊤K= (2AP)𝜔 } = (2AP)𝜔 = J⊤K

J○(𝜙∧𝜓)K= {𝜎 ∈ (2AP)𝜔 | 𝜎 ↾ 1 ∈ J𝜙K∩ J𝜓K} = J○𝜙K∩ J○𝜓K= J○𝜙∧○𝜓K.

Very similarly,○ is amap of joins iff○⊥=⊥ and○(𝜙∨𝜓) =○𝜙∨○𝜓. One
can show that both equalities hold by applying J−K and showing the equality
of the sets like above.

Thus○ ∶ (𝔏(LML),≤)→ (𝔏(LML),≤) is a morphism of lattices.
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2.3 Distributive Lattices.
Question 12. Show that the following two distributive laws are equivalent in a lattice
(𝐿,∨,∧,⊥,⊤):

∀𝑎,𝑏,𝑐 ∈ 𝐿, 𝑎 ∧(𝑏∨𝑐) = (𝑎∧𝑏)∨(𝑎∧𝑐) (dist₁)
∀𝑎,𝑏,𝑐 ∈ 𝐿, 𝑎 ∨(𝑏∧𝑐) = (𝑎∨𝑏)∧(𝑎∨𝑐) (dist₂)

Suppose (dist₁) holds and let us show (dist₂) is true for 𝑎,𝑏,𝑐 ∈ 𝐿:

(𝑎 ∨𝑏)∧(𝑎∨𝑐) = ((𝑎 ∨𝑏)∧𝑎)∨((𝑎 ∨𝑏)∧𝑐) by (dist₁)
= 𝑎∨((𝑎 ∨𝑏)∧𝑐) by (abs₂)
= 𝑎∨(𝑎∧𝑏)∨(𝑏∧𝑐) by (dist₁)
= 𝑎∨(𝑏∧𝑐) by (abs₁).

To prove that (dist₁) holds when (dist₂) is true, we can apply the previous re-
sult to the lattice (𝐿,≤)op = (𝐿,≥). This gives exactly the implication “(dist₂)
implies (dist₁),” as wanted.

Thus, the two distributive laws (dist₁) and (dist₂) are equivalent.

Question 13. Show that the lattice (𝔏(LML),≤) is distributive.

Let 𝜙,𝜓,𝜗 ∈ 𝔏(LML). We have that

J𝜙∧(𝜓∨𝜗)K= J𝜙K∩(J𝜓K∪J𝜗K) = (J𝜙K∩J𝜓K)∪(J𝜙K∩J𝜗K) = J(𝜙∧𝜓)∨(𝜙∧𝜗)K,

thus 𝜙∧(𝜓∨𝜗) = (𝜙∧𝜓)∨(𝜙∧𝜗).

Question 14. Consider the following latticeM3:

𝑏

⊤

⊥

𝑎 𝑐
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(i.e.⊥≤ 𝑎,𝑏,𝑐 ≤ ⊤with𝑎,𝑏,𝑐 incomparable). Show thatM3 is not distributive.

SupposeM3 is distributive. As 𝑎,𝑏,𝑐 are incomparable, we have that

𝑎∧𝑏 = 𝑎∧𝑐 =⊥ and 𝑏∨𝑐 =⊤,

and thus,

𝑎 = 𝑎∧⊤= 𝑎∧(𝑏∨𝑐) = (𝑎∧𝑏)∨(𝑎∧𝑐) =⊥∨⊥=⊥,

which is absurd. ThusM3 is not distributive.

2.4 Booleans algebras.
Question 15. Show that if (𝐿,≤) is a distributive lattice then 𝑎 ∈ 𝐿 has at most one
complement.

Consider 𝑐,𝑐′ ∈ 𝐿 two complements of 𝑎 ∈ 𝐿. Then, we have that

𝑐 = 𝑐∧⊤= 𝑐∧(𝑎∨𝑐′) (dist₁)= (𝑐∧𝑎)∨(𝑐∧𝑐′) = ⊥∨(𝑐∧𝑐′) = 𝑐∧𝑐′,

and,

𝑐′ = 𝑐′∧⊤= 𝑐′∧(𝑎∨𝑐) (dist₁)= (𝑐′∧𝑎)∨(𝑐′∧𝑐) =⊥∨(𝑐′∧𝑐) = 𝑐′∧𝑐.

We can conclude that 𝑐 = 𝑐′ by commutativity of meets.

Question 16. Show that (𝔏(LML),≤) is a Boolean algebra.

Let us show that ¬𝜙 is a complement for 𝜙 ∈ 𝔏(LML). We have to check that
𝜙∧¬𝜙 =⊥ and𝜙∨¬𝜙 =⊤ hold. Both equalities can be easily checked with
interpretations:

J𝜙∧¬𝜙K= J𝜙K∩ J𝜙K∁ =∅= J⊥K,

and
J𝜙∨¬𝜙K= J𝜙K∪ J𝜙K∁ = (2AP)𝜔 = J⊤K.

Thus,¬𝜙 is the complement of 𝜙 in (𝔏(LML),≤), which is, as a consequence,
a Boolean algebra.
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Question 17. Show that the following De Morgan Laws hold in every Boolean algebra
(𝐵,∨,∧,⊥,⊤):

𝑎∧𝑏 =¬(¬𝑎∨¬𝑏) 𝑎∨𝑏 =¬(¬𝑎∧¬𝑏) 𝑎 = ¬¬𝑎.

We start by showing that¬𝑎∨¬𝑏 is a complement to (𝑎 ∧𝑏):

(𝑎 ∧𝑏)∧(¬𝑎∨¬𝑏) = (𝑎∧𝑏∧¬𝑏)∨(𝑎∧𝑏∧¬𝑎) =⊥∨⊥=⊥
(𝑎∧𝑏)∨(¬𝑎∨¬𝑏) = (𝑎∨¬𝑎∨¬𝑏)∧(𝑏∨¬𝑎∨¬𝑏) =⊤∧⊤=⊤,

by using the Boolean algebra laws. Thus 𝑎∧𝑏 =¬(¬𝑎∨¬𝑏).

For 𝑎∨𝑏 = ¬(¬𝑎∧¬𝑏), we proceed by duality by applying the previous re-
sult to the Boolean algebra (𝐵,∧,∨,⊤,⊥), as a complement for 𝑎 in (𝐵,≥) is
exactly a complement for 𝑎 in (𝐵,≤).

We can easily check that¬⊤=⊥, and then

𝑎 = 𝑎∧⊤=¬(¬𝑎∨¬⊤) = ¬(¬𝑎∨⊥) = ¬¬𝑎.

Question 18. Show that if𝑓 is a map of Boolean algebras from (𝐵,≤) to (𝐵 ′,≤′) then𝑓
preserves complements.

We have that

⊥′ = 𝑓(⊥) = 𝑓(𝑎∧¬𝑎) = 𝑓(𝑎)∧′ 𝑓(¬𝑎),

and
⊤= 𝑓(⊤) = 𝑓(𝑎∨¬𝑎) = 𝑓(𝑎)∨′ 𝑓(¬𝑎),

thus𝑓(¬𝑎) is a complement of𝑓(𝑎) and, by unicity,𝑓(¬𝑎) = ¬𝑓(𝑎). We can
conclude that a map of Boolean algebras preserves complements.

3 Representation of Boolean Algebras.

The rest will be given in the next part.
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