— Homework —

Semantics and Verification
Hugo SALOU

1 Toward Stone Duality.

Question 1. Show that every Stone space (X, Q) is Hausdorff (if x,y € X are distinct,
there there are disjoint U,V € Q suchthatx € Uandy € V).

Let x, y € X betwo distinct points of a Stone space (X, Q). As, (X,Q)is Ty and
without loss of generality, there exists W € Q suchthatx € Wand y ¢ W. As
(X,Q) is zero-dimensional, we can write W =: J;c; W; where W; € KQ for
every i € I. Thus, there exists a clopen set U := W, € Q such that x € W; < U.
Define V:=X~U € Q,andwe havethatx e U,y e V(asy ¢ W 2 U) and
the open sets U and V are disjoint. We can conclude that every Stone space
is Hausdorft.

Question 2. Show that < is a partial order on £(LML).
We start by showing the following lemma.

Lemma1. We have ¢ <y if and only if [¢] < [v].

Proof. We have that p < w iff ¢ = ¢ Aw iff [¢] = [¢p Ay] = [¢] n [w] (that
last equality is by definition of [-]) iff [¢] < [w]. (]

We can thus easily show that < is a partial order.
> Reflexivity. As [¢] < [¢], we have that ¢ < ¢ for every ¢ € £(LML).

> Transitivity. For any ¢, 1,9 € £(LML), if ¢ < w and ¢ < 9 then, by the
lemma, [¢] < [w] < [9], thus we have [¢] < [9],i.e. p <.

> Antisymmetry. For any ¢, € £(LML), if ¢ < w and ¢ < ¢ then, by
double inclusion with the above lemma, [¢] = [v] thus ¢ = v as we
consider LML-formulae quotiented by =.
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2 Lattices and Boolean Algebras.

2.1 Semilattices.
Question 3. Let (L, <) be a partial order.

1. Showthat (L, <) isameetsemilatticeif, andonlyif, L has binary meets A : L x L —
L and greatest element T € L.

2. Showthat (L, <)isajoinsemilatticeif,and onlyif, L has binaryjoinsv : L x L —
Land least element L € L.

1. If (L, <) is a meet semilattice, then L has binary meets and a greatest
element T = A @ (any element is a lower bound of @, thus the greatest
lower bound of @ is the greatest element).

Now, suppose (L,<) has a binary meet A and a greatest element T.
Consider {a; | i € I} a finite subset of elements of L. By induction
on #I € N, we define A\;.; a; € I and show that A,.;a; is a meet of the
finite set {a; | i € I'} (like the notation suggests).

> Define A\;c, a; := T € L;as any element is a lower bound of @, the
greatest lower bound of @ is the greatest element.

> Consider I := Ju{i}. Byinduction hypothesis, we have that A\ ;¢; a;
exists in L and is a meet of {a; | j € J} in (L, <). Define

Nar=(A\a)nra;el.

kel jeJ

We have that A,.;a; is a lower bound of {a;. | k € I'}. Consider
an element a; with k € I. If k € J then a; < \je;a; < Apejap-
Otherwise k = i and we immediacy have that a; < A\ ap -

Consider a lower bound b € L of {a; | k € I}, then b is a lower
bound of {a; | j € J} and b < a;. We have b < \j¢;a;and b < a;,
therefore b < Ai¢;ay.-

We can conclude that A a; is a meet of {a,. | k € K}.

Finally, we have that (L, <) has finite meets.
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2. This results follows from 1 when considering the partial order (L, =),
by duality. Meets in (L, =) are exactly joins in (L, <), and the greatest
element of (L, =) is the least element of (L, <), and vice versa.

Note. In the following, when I will be dealing with multiple partial orders
on the same set (e.g. < and =), I will write A_ for the meet operator in
poset (I, <), \/ for the join operator in poset (I, <), T_ for the greatest
element in poset (I, <) and L _ for the least element in poset (I, <).

Question 4. Prove the following.

1. Let (L, <) be a meet semilattice with binary meets A : L x L — L and greatest
element T € L. Then (L, A\, T) isa commutative mooned in which every element
is idempotent. Moreover, we have a < biffa =a A b.

2. Let (L, <) be ajoin semilattice with binary joins v : L x L — L and least ele-
ment 1. Then(L, Vv, L) isacommutative moonedin which every element isidem-
potent. Moreover, we have a < biffb = a A b.

1. Let a,b,c € L. First, we have thata A b = Ala,b} = N{b,al =bAra
thus the binary meet operation A is commutative. Then, as a special
case of the previous question, we have that a and T A a are both meets
of {a}. And, by unicity of meets (i.e. antisymmetry of <, mainly), they
are equals. Also as a special case of the previous question, we have that

elements
an(bac)=TA(an(bAc))

and
(anb)Ac=cA(anb)=TA(cA(anb))

are both meets of the set {a, b, c}, thus are equal. Next, we have that

ana=Naal=Na}=Tra=a

(penultimate equality is from last question), thus a A a = a. Finally, we
have that:

> if a = a A bthen a is a lower bound of {a, b} thus a < b;
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> if a < bthen a = a A b as a is a lower bound of {a, b} and any
lower bound c of {a, b} must satisfy ¢ < a.

2. Consider the meet semilattice (L, =) and apply the results above. Meets
in (L, =) are exactly joins in (L, <), and the greatest element of (L, =)
is the least element of (L, <), and vice versa. The last statement follows
from the equivalence:

as<b it bza it b=an,b iff b=av_b,

where the second “iff” follows from the result above for (L, =), and the
last one follows from the equalityan, b=a v_b.

Question 5. Prove the following.

1. Given a commutative monoid (L, A, T ) in which every element is idempotent, let
a<, biffa=anb.Then(L,<,)isameetsemilattice with binary meetsgiven
by A and greatest element T.

2. Givena commutative monoid (L, Vv, L) in which every element is idempotent, let
a<,biffb=av b. Then (L, <) isajoin semilattice with binary joins given
by v and least element 1.

1. Let us start by showing that (L, <, ) is a partial order.
> Reflexivity. As a A a = a by idempotence, we have a <, a.

> Antisymmetry. If a <, band b <, a then, by commutativity, we
haveanb=a=b.

> Transitivity. If a <, band b <, c then, by associativity,
a=anb=an(bArc)=(anb)Ac=aAc,

thusa <, c.

By question 3, it suffices to show that (L, <,) that binary meets for
poset (L,<,) are A and that T is the greatest element of poset (L, <,).
Consider a, b, ¢ three arbitrary elements of L.

> Forany b € L,wehave b AT = b (as T is a neutral element) and
thus b <, T forall b e L, so T is the greatest element of (L, <,).
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> Firstly, element a A b is a lower bound of {a, b} as

anb<,a it anb=(anb)ra
anb<,b it anb=(anb)Ab

and the latter equalities are true by idempotence, associativity,
and finally commutativity. Secondly, consider ¢ € L such that we
havec <, aandc <, b,thencAa = ¢ = ¢ Ab. We therefore have
thatc<,anb,as

cA(anb)=(chna)ANb=cAb=c.

We can conclude that A is the binary meet operator in (L, <,).

2. Applying the previous result with the commutative monoid (L, v, L),
we obtain that (L,>=, ) is a meet semilattice where binary meets for
>, are given by v and the greatest element for =, is L. We can thus
conclude that (L, <, ) is ajoin semilattice where binary joins for <,, are
given by v and the least element for <, is L.

Question 6. Show the following, for the partial order (£(LML), <):

1. (£(LML), <) isa meet semilattice with greatest element T and binaryjoins given
by

— A= £(LML) x £(LML) — £(LML)
(9[)’ W) — Qb ANY;

2. (£(LML), <) isajoin semilattice with least element 1 and binary joins given by
— v —: £(LML) x £(LML) — £(LML)

(Qb»U/) *’C/)VW

We will use the lemma proven in question 2 (lemma 1, page 1).

*The notation is, in a way, “context-sensitive,” as for an arbitrary monoid (M, ®,I), we can
eitherdefinea <, basa®b=aora<gy basa®b=b.
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1. We only need to show that — A — defines a binary meet for (£(LML), <)
and that T is a greatest element.

For any ¢ € £(LML), we have ¢ < T as [¢p] < [T] = (2*)®, thus T is
the greatest element.

For any formulae ¢, € £(LML), we havethat p Ay < pand pAw <
asboth [[¢] and [y are supersets of [p Aw] = [¢p] n[w] (by definition
of interpretation [—]). Then, if 9 < ¢ and 9 < vy, we have that [9] <

g;b]] and [9] < [y] thus [9] < [¢] n [vw] = [¢ A w], therefore 9 <
A

We can conclude that (£(LML), <) is a meet semilattice with greatest
element T and binary meets given by — A —.

2. We only need to show that — v — defines a binary join for (£(LML), <)
and that L is a least element.

For any ¢p € £(LML), we have L < ¢pas @ < [L] < [¢], thus L is the
least element.

For any formulae ¢, € £(LML), we havethat¢p < pvyandw < pvy
asboth [¢] and [y] are subsets of [p v ] = [p]u[w] (by definition of
interpretation [—]). Then, if ¢ < 9 and @ < 9, we have that [¢] < [9]

and [y] < [9] thus [¢ vy] = [¢] u[w] < [9], therefore p vy < .

We can conclude that (£(LML), <) is a join semilattice with least ele-
ment L and binary joins given by — v —.

Question 7. Show that a map of meet (resp. join) semilattices is monotone.

Let f : L — L' be an arbitrary function where (L, <) and (L', <') are partial
orders.

1. Suppose f: (L,<) — (L',<") is a map of meet semilattices. Let a,b €
L.If a < b,then a A b = aand, as f preserves finite meets,

fl@)N f(b)=f(anb)=f(a),

and thus f(a) <’ f(b). Therefore, f is monotone.
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2. Suppose f:(L,<) — (L', <) isamap of join semilattices. Let a, b € L.
If a<b,thenavVv b= band, as f preserves finite joins,

fla)Vv'f(b)=f(avb)=f(b),
and thus f(a) <’ f(b). Therefore, f is monotone.

2.2 Lattices.

Question 8. Consider the partial order (L, =) where
L:=Nu{a,p, T},

where C is the reflexive-transitive closure of T, where

(a<binN
or
achb iff {acNandbe{a,p}
or
laela,flandb=T.

Show that (L, E) is a join semilattice but is not a lattice.

a
R

0 C 1 C 2 C 3 C < >T

N

Figure1 | Hasse diagram of (L, ©) from question 8

Note: Hasse diagrams are usually read bottom-to-top,
but this one is drawn left-to-right for convenience.

The relation C is a partial order. Reflexivity and transitivity is true by defini-
tion of C as the reflexive and transitive closure of . For antisymmetry, we
have that:

> forn,meN,nc miff n < m;
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> forany n €e Nand m € L ~N, we have n € m and m  n;
> aCT,BCT,Txa, TEL, aLPand P a;
(this can be shown by induction on the relation C).

We have that 0 is the least element in (L,E): we have that0E a foralla € L.
Fora,b € L,we candefinea v b as:

> ifa,beN,letav b := minSN(a, b);

> ifaeNandbeL~N,letav b,bVva:=b;

> otherwiseletavpf:=T,ana:=a,anT,TAa:=Tforac{a,p, T}
Using the previous results on =, we have that — v — really is a join.
This concludes the proof that (L, E) is a join semilattice.

We also have that (L, C) is not a lattice. Suppose it is a lattice, and consider
the element a := a A B. Necessarily, we have that a € N (if a = a then we
would have @ C 8, which is false). Asa = a A fand a + 1 C a,  we have, by
definition of meet, thata+1C a,thusa+ 1 < a (since a,a + 1 € N) which is
absurd. We can conclude that (L, =) is not a lattice.

Question 9. Consider a set L equipped with two binary operations A,V : L x L — L
and two constants T, L € L. Assume that (L, A\, T) and (L, Vv, L) are commutative
monoids in which every element is idempotent. Show that the following are equivalent.

1. The partial order <\, induced by (L, v, L) coincides with the partial order <, in-
duces by (L, A, T).

2. (L,Vv, A, L, T)satisfies the two following absorptive laws:

Va,belL, av(anb)=a (abs,)
Va,belL, an(avb)=a (abs,)

> Let us show that 1implies 2. Leta, b € L. We havethataAb <, aand,
assuming <, and <,, coincide, a A b <, a,thusav (aAb) = a, i.e.
(abs,) holds. Similarly,a <, avbthusa<, av b,so(aAnb)va=a
holds, and we can recover (abs;) by using commutativity.

> Let us show that 2 implies 1.
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— Suppose b <, a,then bAa = b. By (abs;) and commutativity, we
havebva=(bAna)Vva=a,thusb <, a.

— Suppose b <, a, then b v a = a. By (abs,), we have
bhna=bA(bva)=Db,

thus b <, a.

Thus the two order coincide.
Question10. Show that the partial order (£(LML), <) is a lattice.

We have shown that (£(LML), <) has a greatest element T, a least element L,
binary meets given by — A — and binary joins given by — v — (question 6). Thus
it has all finite meets and finite joins (as seen in question 3), i.e. (£(LML), <)
is a lattice.

Question 11. Show that the function
O: £(LML) — £(LML)
¢ — O
is a morphism of lattices.

We know O is a map of meetiff OT = T and O(¢p Ay) = O A Ow. Both are
true as,

[OoT]={oce@®)?|ot1e[T]=(2")*}=(2")=[T]
[oprp)] ={oe (@) |o11e[¢p]n[y]}=[0¢] n[oy] =[0¢p AOY].
Very similarly, O isamap of joins iff O = L and O(¢p vy) = O¢p Vv Oy. One

can show that both equalities hold by applying [-] and showing the equality
of the sets like above.

Thus O : (£(LML), <) — (£(LML), <) is a morphism of lattices.
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2.3 Distributive Lattices.

Question 12. Show that the following two distributive laws are equivalent in a lattice
(L,v,N, L, T):

Va,b,ce L, an(bvc)=(anb)v(anc) (disty)
Va,b,ce L, av(banc)=(avb)a(aVvc) (disty)

Suppose (dist;) holds and let us show (dist,) is true for a, b, c € L:

(avb)n(ave)=((avb)rna)v((avb)nc) by (disty)

=av((avb)ac) by (abs,)
=avVv(anb)v(bAc) by (disty)
=aVv(bAac) by (abs,).

To prove that (dist;) holds when (dist,) is true, we can apply the previous re-
sult to the lattice (L, <) = (L, =). This gives exactly the implication “(dist,)
implies (dist;),” as wanted.

Thus, the two distributive laws (dist;) and (dist,) are equivalent.
Question 13. Show that the lattice (£(LML), <) is distributive.

Let ¢, y, 9 € £(LML). We have that
[entyvo)] = [o]n([w]u[o]) = ([e]nlw]Dulle]n[o]) = [(eay)viead)],
thusp A(py vOI)=(pAy) Vv (pAD).

Question 14. Consider the following lattice Mj:

/TN
ANV

T

a

b c

1
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(ie. L <a,b,c < T witha,b, cincomparable). Show that My is not distributive.

Suppose Mj; is distributive. As a, b, ¢ are incomparable, we have that
aNb=anc=1 and bve=T,
and thus,
a=aNT=an(bvc)=(anb)v(anc)=Lvl1l=1,
which is absurd. Thus M, is not distributive.

2.4 Booleans algebras.

Question 15. Show that if (L, <) is a distributive lattice then a € L has at most one
complement.

Consider c, ¢’ € L two complements of a € L. Then, we have that
C=C/\TZC/\(aVC,)(diZStl)(C/\Cl)V(C/\C’)=J_V(C/\C’)=C/\C’,
and,
C’=C'/\TZC'/\(CZVC)(diZStI)(C'/\a)V(C’/\C)=J_V(C'/\C)=C'/\C.
We can conclude that ¢ = ¢’ by commutativity of meets.

Question 16. Show that (£(LML), <) is a Boolean algebra.

Let us show that ¢ is a complement for ¢ € £(LML). We have to check that
¢ A-¢p=_1Land ¢pVv-¢p =T hold. Both equalities can be easily checked with
interpretations:

[¢ A -¢] =[¢] n[o]" = =[1],

and
[pv ¢l =[elule]” =) =[TI.

Thus, ¢ is the complement of ¢ in (£(LML), <), which is, as a consequence,
a Boolean algebra.
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Question 17. Show that the following De Morgan Laws hold in every Boolean algebra
(B,v,A, L, T):

a/\b=—|(—|av—|b) aVb:_l(_la/\_lb) a=--d.

We start by showing that wa v =b is a complement to (a A b):

(anb)A(nav-ab)=(anbA-b)v(ianbA-a)=1Lv.Il=1
(anb)v(mav-ab)=(av-aVv-b)A(bVv-aVv-b)=TAT=T,

by using the Boolean algebra laws. Thus a A b = =(—a v -b).

For a Vv b = ~(—a A ~b), we proceed by duality by applying the previous re-
sult to the Boolean algebra (B, A, Vv, T, 1), as a complement for a in (B, =) is
exactly a complement for a in (B, <).

We can easily check that - T = L, and then

a:aAT:_I(_IaV_IT):_I(_IaVJ_):_I_Ia.

Question18. Show that if f is a map of Boolean algebras from (B, <) to (B',<") then f
preserves complements.

We have that

L'=f(L)=flan=a)=fla)N f(-a),

and
T :f(T) :f(él \ ﬁa) :f(a) V,f(_'a)r

thus f(—a) is a complement of f(a) and, by unicity, f(—~a) = -f(a). We can
conclude that a map of Boolean algebras preserves complements.

3 Representation of Boolean Algebras.

The rest will be given in the next part.
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